Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11·2 microdeletion and partial DiGeorge syndrome

Authors


T. Güngör, Division of Immunology/Hematology/BMT, University Children's Hospital, Steinwiesstrasse 74, CH-8032 Zürich, Switzerland.
E-mail: tayfun.guengoer@kispi.uzh.ch

Summary

A subgroup of patients with 22q11·2 microdeletion and partial DiGeorge syndrome (pDGS) appears to be susceptible to non-cardiac mortality (NCM) despite sufficient overall CD4+ T cells. To detect these patients, 20 newborns with 22q11·2 microdeletion and congenital heart disease were followed prospectively for 6 years. Besides detailed clinical assessment, longitudinal monitoring of naive CD4+ and cytotoxic CD3+CD8+ T cells (CTL) was performed. To monitor thymic activity, we analysed naive platelet endothelial cell adhesion molecule-1 (CD31+) expressing CD45RA+RO-CD4+ cells containing high numbers of T cell receptor excision circle (TREC)-bearing lymphocytes and compared them with normal values of healthy children (n = 75). Comparing two age periods, low overall CD4+ and naive CD4+ T cell numbers were observed in 65%/75%, respectively, of patients in period A (< 1 year) declining to 22%/50%, respectively, of patients in period B (> 1/< 7 years). The percentage of patients with low CTLs (< P10) remained robust until school age (period A: 60%; period B: 50%). Low numbers of CTLs were associated with abnormally low naive CD45RA+RO-CD4+ T cells. A high-risk (HR) group (n = 11) and a standard-risk (SR) (n = 9) group were identified. HR patients were characterized by low numbers of both naive CD4+ and CTLs and were prone to lethal infectious and lymphoproliferative complications (NCM: four of 11; cardiac mortality: one of 11) while SR patients were not (NCM: none of nine; cardiac mortality: two of nine). Naive CD31+CD45RA+RO-CD4+, naive CD45RA+RO-CD4+ T cells as well as TRECs/106 mononuclear cells were abnormally low in HR and normal in SR patients. Longitudinal monitoring of naive CD4+ and cytotoxic T cells may help to discriminate pDGS patients at increased risk for NCM.

Ancillary