• 1
    Raviglione MC. The TB epidemic from 1992 to 2002. Tuberculosis (Edinb) 2003; 83:414.
  • 2
    Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 2001; 1:2030.
  • 3
    Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. Immunol J Clin 2007; 27:34762.
  • 4
    Ulrichs T, Kosmiadi GA, Jorg S et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J Infect Dis 2005; 192:8997.
  • 5
    Carranza C, Juarez E, Torres M, Ellner JJ, Sada E, Schwander SK. Mycobacterium tuberculosis growth control by lung macrophages and CD8 cells from patient contacts. Am J Respir Crit Care Med 2006; 173:23845.
  • 6
    Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002; 61 (Suppl. 2):ii548.
  • 7
    Bonecini-Almeida MG, Chitale S, Boutsikakis I et al. Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-gamma and primed lymphocytes. J Immunol 1998; 160:44909.
  • 8
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to infection. J Exp Med 1993; 178:224954.
  • 9
    Dorman SE, Picard C, Lammas D et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet 2004; 364:211321.
  • 10
    Macmicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 1997; 94:52438.
  • 11
    Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178:22437.
  • 12
    Zissel G, Ernst M, Schlaak M, Muller-Quernheim J. Pharmacological modulation of the IFNgamma-induced accessory function of alveolar macrophages and peripheral blood monocytes. Inflamm Res 1999; 48:6628.
  • 13
    Hu X, Herrero C, Li WP et al. Sensitization of IFN-gamma Jak-STAT signaling during macrophage activation. Nat Immunol 2002; 3:85966.
  • 14
    Ramana CV, Gil MP, Schreiber RD, Stark GR. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol 2002; 23:96101.
  • 15
    Yang CS, Lee JS, Song CH et al. Protein kinase C zeta plays an essential role for Mycobacterium tuberculosis-induced extracellular signal-regulated kinase 1/2 activation in monocytes/macrophages via Toll-like receptor 2. Cell Microbiol 2007; 9:38296.
  • 16
    Yang CS, Shin DM, Lee HM et al. ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol 2008; 10:74154.
  • 17
    Barnes PF, Fong SJ, Brennan PJ, Twomey PE, Mazumder A, Modlin RL. Local production of tumor necrosis factor and IFN-gamma in tuberculous pleuritis. J Immunol 1990; 145:14954.
  • 18
    Bai X, Wilson SE, Chmura K, Feldman NE, Chan ED. Morphometric analysis of Th(1) and Th(2) cytokine expression in human pulmonary tuberculosis. Tuberculosis (Edinb) 2004; 84:37585.
  • 19
    Schwander SK, Torres M, Carranza CC et al. Pulmonary mononuclear cell responses to antigens of Mycobacterium tuberculosis in healthy household contacts of patients with active tuberculosis and healthy controls from the community. J Immunol 2000; 165:147985.
  • 20
    Ribera E, Ocana I, Martinez-Vazquez JM, Rossell M, Espanol T, Ruibal A. High level of interferon gamma in tuberculous pleural effusion. Chest 1988; 93:30811.
  • 21
    Lin Y, Zhang M, Hofman FM, Gong J, Barnes PF. Absence of a prominent Th2 cytokine response in human tuberculosis. Infect Immun 1996; 64:13516.
  • 22
    Robinson DS, Ying S, Taylor IK et al. Evidence for a Th1-like bronchoalveolar T-cell subset and predominance of interferon-gamma gene activation in pulmonary tuberculosis. Am J Respir Crit Care Med 1994; 149:98993.
  • 23
    Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL. Cytokine production at the site of disease in human tuberculosis. Infect Immun 1993; 61:34829.
  • 24
    Wong KC, Leong WM, Law HK et al. Molecular characterization of clinical isolates of Mycobacterium tuberculosis and their association with phenotypic virulence in human macrophages. Clin Vaccine Immunol 2007; 14:127984.
  • 25
    Laochumroonvorapong P, Paul S, Manca C, Freedman VH, Kaplan G. Mycobacterial growth and sensitivity to H2O2 killing in human monocytes in vitro. Infect Immun 1997; 65:48507.
  • 26
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126:1318.
  • 27
    Schlesinger LS. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 1993; 150:292030.
  • 28
    Banaiee N, Kincaid EZ, Buchwald U, Jacobs WR Jr, Ernst, JD. Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J Immunol 2006; 176:301927.
  • 29
    Kang PB, Azad AK, Torrelles JB et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 2005; 202:98799.
  • 30
    Kang BK, Schlesinger LS. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect Immun 1998; 66:276977.
  • 31
    Nadesalingam J, Dodds AW, Reid KB, Palaniyar N. Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J Immunol 2005; 175:178594.
  • 32
    Chang JS, Huggett JF, Dheda K, Kim LU, Zumla A, Rook GA. Myobacterium tuberculosis induces selective up-regulation of TLRs in the mononuclear leukocytes of patients with active pulmonary tuberculosis. J Immunol 2006; 176:301018.
  • 33
    Douvas GS, Looker DL, Vatter AE, Crowle AJ. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect Immun 1985; 50:18.
  • 34
    Rook GA, Steele J, Ainsworth M, Champion BR. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma-interferon on human monocytes and murine peritoneal macrophages. Immunology 1986; 59:3338.
  • 35
    Placido R, Mancino G, Amendola A et al. Apoptosis of human monocytes/macrophages in Mycobacterium tuberculosis infection. J Pathol 1997; 181:318.
  • 36
    Park GY, Im YH, Ahn CH et al. Functional and genetic assessment of IFN-gamma receptor in patients with clinical tuberculosis. Int J Tuberc Lung Dis 2004; 8:12217.
  • 37
    Condos R, Raju B, Canova A et al. Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect Immun 2003; 71:205864.
  • 38
    Fortune SM, Solache A, Jaeger A et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol 2004; 172:627280.
  • 39
    Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163:3898906.
  • 40
    Hu X, Chen J, Wang L, Ivashkiv LB. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 2007; 82:23743.
  • 41
    Ramana CV, Chatterjee-Kishore M, Nguyen H, Stark GR. Complex roles of Stat1 in regulating gene expression. Oncogene 2000; 19:261927.
  • 42
    Ramana CV, Gil MP, Han Y, Ransohoff RM, Schreiber RD, Stark GR. Stat1-independent regulation of gene expression in response to IFN-gamma. Proc Natl Acad Sci USA 2001; 98:66749.
  • 43
    Gough DJ, Sabapathy K, Ko EY et al. A novel c-Jun-dependent signal transduction pathway necessary for the transcriptional activation of interferon gamma response genes. J Biol Chem 2007; 282:93846.
  • 44
    Hu X, Paik PK, Chen J et al. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 2006; 24:56374.
  • 45
    Fortin A, Abel L, Casanova JL, Gros P. Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet 2007; 8:16392.
  • 46
    Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev 2005; 208:12640.
  • 47
    Gil A, Maria AC, Gil-Campos M, Canete R. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. Br J Nutr 2007; 98 (Suppl. 1):S1216.
  • 48
    Kawanaka N, Yamamura M, Aita T et al. CD14+,CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 2002; 46:257886.
  • 49
    Scherberich JE, Nockher WA. CD14++ monocytes, CD14+/CD16+ subset and soluble CD14 as biological markers of inflammatory systemic diseases and monitoring immunosuppressive therapy. Clin Chem Lab Med 1999; 37:20913.
  • 50
    Verreck FA, De Boer T, Langenberg DM, Van Der ZL, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006; 79:28593.
  • 51
    Moreno-Altamirano MM, Aguilar-Carmona I, Sanchez-Garcia FJ. Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsiveness. Immunology 2007; 120:53643.
  • 52
    Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989; 74:252734.