SEARCH

SEARCH BY CITATION

Keywords:

  • Fc receptors;
  • idiopathic thrombocytopaenia purpuria/thrombocytopenia;
  • intravenous immunoglobulin therapy;
  • platelets;
  • protein structure/folding

Summary

Intravenous immunoglobulin (IVIG) has been used widely to treat immune thrombocytopenic purpura (ITP), but the mechanisms of its action remain unclear. We investigated the affinity for Fcγ receptors (FcγRs) and the thrombocytopenia-ameliorating effect of S-sulfonated gammaglobulin (SGG) and S-alkylated gammaglobulin (AGG), in comparison with unmodified gammaglobulin (GG), in a mouse ITP model. Cleavage of immunoglobulin (Ig)G interchain disulfide bonds by either S-sulfonation or S-alkylation did not decrease the affinity for FcγRIIA (CD32A) and FcγRIIB (CD32B), but did decrease the affinity for FcγRIA (CD64A) and FcγRIIIA (CD16A), presumably because of changes in H-chain configuration. The interchain disulfide bond cleavage decreased the affinity much more for mouse FcγRIV than for mouse FcγRIIB. The ability of AGG to ameliorate ITP was greatly diminished, while SGG, whose disulfide bonds are reconstituted in vivo, was as effective as GG. These results suggest that the interchain disulfide bonds are important for therapeutic effect. It is also suggested that the interaction of IVIG with the inhibitory receptor FcγRIIB is insufficient for effective amelioration of ITP and that, at least in this model, direct binding of IVIG to FcγRIIIA is also required.