Efficacy of intravenous immunoglobulin (IVIG) affinity-purified anti-desmoglein anti-idiotypic antibodies in the treatment of an experimental model of pemphigus vulgaris

Authors


Y. Shoenfeld, Department of Medicine B and Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer 52621, Israel.
E-mail: shoenfel@post.tau.ac.il

Summary

Pemphigus vulgaris is a rare life-threatening autoimmune bullous disease caused by immunoglobulin G (IgG) autoantibodies directed against desmogleins 1 and 3. Previously, we showed that intravenous immunoglobulin (IVIG) ameliorates anti-desmoglein-induced experimental pemphigus vulgaris in newborn naive mice. The aim of this study was to examine the efficacy of anti-anti-desmoglein-specific IVIG in a similar model. Pemphigus-vulgaris-specific IVIG (PV-sIVIG) was affinity-purified from IVIG on a column of single-chain variable fragment (scFv) anti-desmogleins 1 and 3. The anti-idiotypic activity of PV-sIVIG was confirmed by enzyme-linked immunosorbent assay, inhibition assay. After induction of pemphigus by injection of anti-desmogleins 1 and 3 scFv to newborn mice, the animals were treated with PV-sIVIG, IVIG (low or high dose) or IgG from a healthy donor (n = 10 each). The skin was examined 24–48 h later, and samples of affected areas were analysed by histology and immunofluorescence. In vitro study showed that PV-sIVIG significantly inhibited anti-desmogleins 1 and 3 scFv binding to recombinant desmoglein-3 in a dose-dependent manner. Specificity was confirmed by inhibition assay. In vivo analysis revealed cutaneous lesions of pemphigus vulgaris in mice injected with normal IgG (nine of 10 mice) or low-dose IVIG (nine of 10 mice), but not in mice treated with PV-sIVIG (none of 10) or high-dose IVIG (none of 10). On immunopathological study, PV-sIVIG and regular IVIG prevented the formation of acantholysis and deposition of IgG in intercellular spaces. In conclusion, the PV-sIVIG preparation is more effective than native IVIG in inhibiting anti-desmoglein-induced pemphigus vulgaris in mice and might serve as a future therapy in patients with the clinical disease.

Ancillary