• 1
    Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998; 394:897901.
  • 2
    De Rosa V, Procaccini C, Cali G et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 2007; 26:24155.
  • 3
    Matarese G, Di GA, Sanna V et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 2001; 166:590916.
  • 4
    Sanna V, Di GA, La CA et al. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest 2003; 111:24150.
  • 5
    De Rosa V, Procaccini C, La CA et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 2006; 116:44755.
  • 6
    Matarese G, Sanna V, Lechler RI et al. Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes 2002; 51:135661.
  • 7
    Lee CH, Reifsnyder PC, Naggert JK et al. Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: I. Pathophysiological analysis. Diabetes 2005; 54:252532.
  • 8
    Lee CH, Chen YG, Chen J et al. Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: II. Immunologic analysis. Diabetes 2006; 55:1718.
  • 9
    Savendahl L, Underwood LE. Decreased interleukin-2 production from cultured peripheral blood mononuclear cells in human acute starvation. J Clin Endocrinol Metab 1997; 82:117780.
  • 10
    Hansen K, Sickelmann F, Pietrowsky R, Fehm HL, Born J. Systemic immune changes following meal intake in humans. Am J Physiol 1997; 273:R548R553.
  • 11
    Esposito K, Nappo F, Marfella R et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002; 106:206772.
  • 12
    Assaloni R, Da RR, Quagliaro L et al. Effects of S21403 (mitiglinide) on postprandial generation of oxidative stress and inflammation in type 2 diabetic patients. Diabetologia 2005; 48:191924.
  • 13
    Kempf K, Rose B, Herder C et al. The metabolic syndrome sensitizes leukocytes for glucose-induced immune gene expression. J Mol Med 2007; 85:38996.
  • 14
    Pfleger C, Meierhoff G, Kolb H, Schloot NC. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients. J Autoimmun 2010; 34:12735.
  • 15
    Pfleger C, Mortensen HB, Hansen L et al. Association of IL-1ra and adiponectin with C-peptide and remission in patients with type 1 diabetes. Diabetes 2008; 57:92937.
  • 16
    Pfleger C, Kaas A, Hansen L et al. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes. Clin Immunol 2008; 128:5765.
  • 17
    Strom TB, Bear RA, Carpenter CB. Insulin-induced augmentation of lymphocyte-mediated cytotoxicity. Science 1975; 187:12068.
  • 18
    Snow EC, Feldbush TL, Oaks JA. The role of insulin in the response of murine T lymphocytes to mitogenic stimulation in vitro. J Immunol 1980; 124:73944.
  • 19
    Berman JS, Center DM. Chemotactic activity of porcine insulin for human T lymphocytes in vitro. J Immunol 1987; 138:21003.
  • 20
    Viardot A, Grey ST, Mackay F, Chisholm D. Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology 2007; 148:34653.
  • 21
    Petrovsky N, Harrison LC. The chronobiology of human cytokine production. Int Rev Immunol 1998; 16:63549.
  • 22
    Petrovsky N, Harrison LC. Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J Immunol 1997; 158:51638.
  • 23
    Afonso G, Scotto M, Renand A et al. Critical parameters in blood processing for T-cell assays: validation on ELISpot and tetramer platforms. J Immunol Methods 2010;359:2836.
  • 24
    Bull M, Lee D, Stucky J et al. Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Methods 2007; 322:5769.
  • 25
    Thornthwaite JT, Rosenthal PK, Vazquez DA, Seckinger D. The effects of anticoagulant and temperature on the measurements of helper and suppressor cells. Diagn Immunol 1984; 2:16774.
  • 26
    Hoffmeister B, Bunde T, Rudawsky IM, Volk HD, Kern F. Detection of antigen-specific T cells by cytokine flow cytometry: the use of whole blood may underestimate frequencies. Eur J Immunol 2003; 33:348492.
  • 27
    Kierstead LS, Dubey S, Meyer B et al. Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS Res Hum Retroviruses 2007; 23:8692.
  • 28
    Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 2001; 61:475660.
  • 29
    McKenna KC, Beatty KM, Vicetti MR, Bilonick RA. Delayed processing of blood increases the frequency of activated CD11b+ CD15+ granulocytes which inhibit T cell function. J Immunol Methods 2009; 341:6875.
  • 30
    De Rose R, Taylor EL, Law MG, Van Der Meide PH, Kent SJ. Granulocyte contamination dramatically inhibits spot formation in AIDS virus-specific ELISpot assays: analysis and strategies to ameliorate. J Immunol Methods 2005; 297:17786.
  • 31
    Lissina A, Ladell K, Skowera A et al. Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J Immunol Methods 2009; 340:1124.
  • 32
    Hensleigh PA, Waters VB, Herzenberg LA. Human T lymphocyte differentiation antigens: effects of blood sample storage on Leu antibody binding. Cytometry 1983; 3:4535.
  • 33
    Mallone R, Martinuzzi E, Blancou P et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 2007; 56:61321.
  • 34
    Martinuzzi E, Novelli G, Scotto M et al. The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment. Diabetes 2008; 57:131220.
  • 35
    Tree TI, Roep BO, Peakman M. Enhancing the sensitivity of assays to detect T cell reactivity: the effect of cell separation and cryopreservation media. Ann NY Acad Sci 2004; 1037:2632.
  • 36
    Nilsson C, Aboud S, Karlen K, Hejdeman B, Urassa W, Biberfeld G. Optimal blood mononuclear cell isolation procedures for gamma interferon enzyme-linked immunospot testing of healthy Swedish and Tanzanian subjects. Clin Vaccine Immunol 2008; 15:5859.
  • 37
    Schlenke P, Kluter H, Muller-Steinhardt M, Hammers HJ, Borchert K, Bein G. Evaluation of a novel mononuclear cell isolation procedure for serological HLA typing. Clin Diagn Lab Immunol 1998; 5:80813.
  • 38
    Ruitenberg JJ, Mulder CB, Maino VC, Landay AL, Ghanekar SA. VACUTAINER CPT and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol 2006; 7:11.
  • 39
    Mannering SI, Morris JS, Jensen KP et al. A sensitive method for detecting proliferation of rare autoantigen-specific human T cells. J Immunol Methods 2003; 283:17383.
  • 40
    Hanekom WA, Hughes J, Mavinkurve M et al. Novel application of a whole blood intracellular cytokine detection assay to quantitate specific T-cell frequency in field studies. J Immunol Methods 2004; 291:18595.
  • 41
    Petrovsky N, Harrison LC. Cytokine-based human whole blood assay for the detection of antigen-reactive T cells. J Immunol Methods 1995; 186:3746.
  • 42
    Suni MA, Picker LJ, Maino VC. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods 1998; 212:8998.
  • 43
    Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984; 247:C125C142.
  • 44
    Axelsson S, Faresjo M, Hedman M, Ludvigsson J, Casas R. Cryopreserved peripheral blood mononuclear cells are suitable for the assessment of immunological markers in type 1 diabetic children. Cryobiology 2008; 57:2018.
  • 45
    Jeurink PV, Vissers YM, Rappard B, Savelkoul HF. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008; 57:91103.
  • 46
    Boaz MJ, Hayes P, Tarragona T et al. Concordant proficiency in measurement of T-cell immunity in human immunodeficiency virus vaccine clinical trials by peripheral blood mononuclear cell and enzyme-linked immunospot assays in laboratories from three continents. Clin Vaccine Immunol 2009; 16:14755.
  • 47
    Kreher CR, Dittrich MT, Guerkov R, Boehm BO, Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods 2003; 278:7993.
  • 48
    Kvarnstrom M, Jenmalm MC, Ekerfelt C. Effect of cryopreservation on expression of Th1 and Th2 cytokines in blood mononuclear cells from patients with different cytokine profiles, analysed with three common assays: an overall decrease of interleukin-4. Cryobiology 2004; 49:15768.
  • 49
    Gerrits JH, Athanassopoulos P, Vaessen LM, Klepper M, Weimar W, Van Besouw NM. Peripheral blood manipulation significantly affects the result of dendritic cell monitoring. Transpl Immunol 2007; 17:16977.
  • 50
    Reimann KA, Chernoff M, Wilkening CL, Nickerson CE, Landay AL. Preservation of lymphocyte immunophenotype and proliferative responses in cryopreserved peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected donors: implications for multicenter clinical trials. The ACTG Immunology Advanced Technology Laboratories. Clin Diagn Lab Immunol 2000; 7:3529.
  • 51
    Costantini A, Mancini S, Giuliodoro S et al. Effects of cryopreservation on lymphocyte immunophenotype and function. J Immunol Methods 2003; 278:14555.
  • 52
    Elkord E. Frequency of human T regulatory cells in peripheral blood is significantly reduced by cryopreservation. J Immunol Methods 2009; 347:8790.
  • 53
    Disis ML, Dela Rosa C, Goodell V et al. Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J Immunol Methods 2006; 308:1318.
  • 54
    Martinuzzi E, Scotto M, Enee E et al. Serum-free culture medium and IL-7 costimulation increase the sensitivity of ELISpot detection. J Immunol Methods 2008; 333:6170.
  • 55
    Stroh C, Cassens U, Samraj AK, Sibrowski W, Schulze-Osthoff K, Los M. The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. FASEB J 2002; 16:16513.
  • 56
    Wolfe J, Bryant G. Freezing, drying, and/or vitrification of membrane- solute-water systems. Cryobiology 1999; 39:10329.
  • 57
    Owen RE, Sinclair E, Emu B et al. Loss of T cell responses following long-term cryopreservation. J Immunol Methods 2007; 326:93115.
  • 58
    Garcia-Pineres AJ, Hildesheim A, Williams M, Trivett M, Strobl S, Pinto LA. DNAse treatment following thawing of cryopreserved PBMC is a procedure suitable for lymphocyte functional studies. J Immunol Methods 2006; 313:20913.
  • 59
    Britten CM, Gouttefangeas C, Welters MJ et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother 2008; 57:289302.
  • 60
    Janetzki S, Panageas KS, Ben-Porat L et al. Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother 2008; 57:30315.
  • 61
    Jennes W, Kestens L, Nixon DF, Shacklett BL. Enhanced ELISPOT detection of antigen-specific T cell responses from cryopreserved specimens with addition of both IL-7 and IL-15 – the Amplispot assay. J Immunol Methods 2002; 270:99108.
  • 62
    Roep BO, Atkinson MA, Van Endert PM, Gottlieb PA, Wilson SB, Sachs JA. Autoreactive T cell responses in insulin-dependent (Type 1) diabetes mellitus. Report of the first international workshop for standardization of T cell assays. J Autoimmun 1999; 13:26782.
  • 63
    Peakman M, Tree TI, Endl J, Van Endert P, Atkinson MA, Roep BO. Characterization of preparations of GAD65, proinsulin, and the islet tyrosine phosphatase IA-2 for use in detection of autoreactive T-cells in type 1 diabetes: report of phase II of the Second International Immunology of Diabetes Society Workshop for Standardization of T-cell assays in type 1 diabetes. Diabetes 2001; 50:174954.
  • 64
    Mannering SI, Purcell AW, Honeyman MC, McCluskey J, Harrison LC. Human T-cells recognise N-terminally Fmoc-modified peptide. Vaccine 2003; 21:363846.
  • 65
    Purcell AW, Chen W, Ede NJ et al. Avoidance of self-reactivity results in skewed CTL responses to rare components of synthetic immunogens. J Immunol 1998; 160:108590.
  • 66
    Matsuo H, Batocchi AP, Hawke S et al. Peptide-selected T cell lines from myasthenia gravis patients and controls recognize epitopes that are not processed from whole acetylcholine receptor. J Immunol 1995; 155:368392.
  • 67
    Nagvekar N, Corlett L, Jacobson LW et al. Scanning a DRB3*0101 (DR52a)-restricted epitope cross-presented by DR3: overlapping natural and artificial determinants in the human acetylcholine receptor. J Immunol 1999; 162:407987.
  • 68
    Janetzki S, Britten CM, Kalos M et al. ‘MIATA’-minimal information about T cell assays. Immunity 2009; 31:5278.
  • 69
    Arif S, Tree TI, Astill TP et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 2004; 113:45163.
  • 70
    Tree TI, Lawson J, Edwards H et al. Naturally arising human CD4 T cells that recognize islet autoantigens and secrete IL-10 regulate pro-inflammatory T cell responses via linked suppression. Diabetes 2010; 59:145160.
  • 71
    Bao M, Yang Y, Jun HS, Yoon JW. Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 2002; 168:536975.
  • 72
    Meier A, Chang JJ, Chan ES et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 2009; 15:9559.