SEARCH

SEARCH BY CITATION

References

  • 1
    Corey L, Wald A, Patel R et al. Once-daily valacyclovir to reduce the risk of transmission of genital herpes. N Engl J Med 2004; 350:1120.
  • 2
    Looker KJ, Garnett GP, Schmid GP. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull World Health Organ 2008; 86:80512.
  • 3
    James SH, Kimberlin DW, Whitley RJ. Antiviral therapy for herpesvirus central nervous system infections: neonatal herpes simplex virus infection, herpes simplex encephalitis, and congenital cytomegalovirus infection. Antiviral Res 2009; 83:20713.
  • 4
    Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. Aids 2006; 20:7383.
  • 5
    Zuckerman RA, Lucchetti A, Whittington WL et al. HSV suppression reduces seminal HIV-1 levels in HIV-1/HSV-2 co-infected men who have sex with men. AIDS 2009; 23:47983.
  • 6
    Mayaud P, Legoff J, Weiss HA et al. Impact of acyclovir on genital and plasma HIV-1 RNA, genital herpes simplex virus type 2 DNA, and ulcer healing among HIV-1-infected African women with herpes ulcers: a randomized placebo-controlled trial. J Infect Dis 2009; 200:21626.
  • 7
    Watson-Jones D, Weiss HA, Rusizoka M et al. Effect of herpes simplex suppression on incidence of HIV among women in Tanzania. N Engl J Med 2008; 358:156071.
  • 8
    Celum C, Wald A, Hughes J et al. Effect of aciclovir on HIV-1 acquisition in herpes simplex virus 2 seropositive women and men who have sex with men: a randomised, double-blind, placebo-controlled trial. Lancet 2008; 371:210919.
  • 9
    Zhu J, Hladik F, Woodward A et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat Med 2009; 15:88692.
  • 10
    Johnson KE, Redd AD, Quinn TC et al. Effects of HIV-1 and herpes simplex virus type 2 infection on lymphocyte and dendritic cell density in adult foreskins from Rakai, Uganda. J Infect Dis 2011; 203:6029.
  • 11
    Sanford M, Keating GM. Zoster vaccine (Zostavax): a review of its use in preventing herpes zoster and postherpetic neuralgia in older adults. Drugs Aging 2010; 27:15976.
  • 12
    Noisakran S, Carr DJ. Lymphocytes delay kinetics of HSV-1 reactivation from in vitro explants of latent infected trigeminal ganglia. J Neuroimmunol 1999; 95:12635.
  • 13
    Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 2000; 191:145966.
  • 14
    Sheridan BS, Cherpes TL, Urban J, Kalinski P, Hendricks RL. Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J Virol 2009; 83:223745.
  • 15
    Harandi AM, Svennerholm B, Holmgren J, Eriksson K. Differential roles of B cells and IFN-gamma-secreting CD4(+) T cells in innate and adaptive immune control of genital herpes simplex virus type 2 infection in mice. J Gen Virol 2001; 82:84553.
  • 16
    Parr MB, Parr EL. Mucosal immunity to herpes simplex virus type 2 infection in the mouse vagina is impaired by in vivo depletion of T lymphocytes. J Virol 1998; 72:267785.
  • 17
    Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 2008; 322:26871.
  • 18
    Verjans GM, Hintzen RQ, van Dun JM et al. Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci USA 2007; 104:3496501.
  • 19
    Derfuss T, Arbusow V, Strupp M, Brandt T, Theil D. The presence of lytic HSV-1 transcripts and clonally expanded T cells with a memory effector phenotype in human sensory ganglia. Ann NY Acad Sci 2009; 1164:3004.
  • 20
    Zhu J, Koelle DM, Cao J et al. CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 2007; 204:595603.
  • 21
    Koelle DM, Posavad CM, Barnum GR, Johnson ML, Frank JM, Corey L. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J Clin Invest 1998; 101:15008.
  • 22
    Dobbs ME, Strasser JE, Chu CF, Chalk C, Milligan GN. Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma interferon and either perforin- or Fas-mediated cytolytic mechanisms. J Virol 2005; 79:1454654.
  • 23
    Cunningham AL, Turner RR, Miller AC, Para MF, Merigan TC. Evolution of recurrent herpes simplex lesions. An immunohistologic study. J Clin Invest 1985; 75:22633.
  • 24
    Arvin A, Campadelli-Fiume G, Mocarski E et al. human herpesviruses: biology, therapy, and immunoprophylaxis, 1st edn. Cambridge: Cambridge University Press, 2007.
  • 25
    Thomsen DR, Roof LL, Homa FL. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol 1994; 68:244257.
  • 26
    Toropova K, Huffman JB, Homa FL, Conway JF. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 2011; 85:751322.
  • 27
    Kemp TJ, Hildesheim A, Safaeian M et al. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine 2011; 29:201114.
  • 28
    Henson BW, Johnson N, Bera A, Okoye ME, Desai KV, Desai PJ. Expression of the HSV-1 capsid protein VP19C in Escherichia coli: a single amino acid change overcomes an expression block of the full-length polypeptide. Protein Expr Purif 2011; 77:805.
  • 29
    Hosken N, McGowan P, Meier A et al. Diversity of the CD8+ T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes. J Virol 2006; 80:550915.
  • 30
    Laing KJ, Magaret AS, Mueller DE et al. Diversity in CD8(+) T cell function and epitope breadth among persons with genital herpes. J Clin Immunol 2010; 30:70322.
  • 31
    Koelle DM, Corey L, Burke RL et al. Antigenic specificities of human CD4+ T-cell clones recovered from recurrent genital herpes simplex virus type 2 lesions. J Virol 1994; 68:280310.
  • 32
    Koelle DM, Frank JM, Johnson ML, Kwok WW. Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J Virol 1998; 72:747683.
  • 33
    Kwok WW, Liu AW, Novak EJ et al. HLA-DQ tetramers identify epitope-specific T cells in peripheral blood of herpes simplex virus type 2-infected individuals: direct detection of immunodominant antigen-responsive cells. J Immunol 2000; 164:42449.
  • 34
    Novak EJ, Liu AW, Gebe JA et al. Tetramer-guided epitope mapping: rapid identification and characterization of immunodominant CD4+ T cell epitopes from complex antigens. J Immunol 2001; 166:666570.
  • 35
    Kwok WW, Gebe JA, Liu A et al. Rapid epitope identification from complex class-II-restricted T-cell antigens. Trends Immunol 2001; 22:5838.
  • 36
    Verjans GM, Dings ME, McLauchlan J et al. Intraocular T cells of patients with herpes simplex virus (HSV)-induced acute retinal necrosis recognize HSV tegument proteins VP11/12 and VP13/14. J Infect Dis 2000; 182:9237.
  • 37
    Jing L, Haas J, Dann G, Dong L, Laing K, Wald ADK. Comprehensive evaluation of the CD8 responses to HSV-1 in humans. J Immunol 2011; 186:105.41.
  • 38
    Koelle DM, Chen HB, Gavin MA, Wald A, Kwok WW, Corey L. CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells. J Immunol 2001; 166:404958.
  • 39
    Muller WJ, Dong L, Vilalta A et al. Herpes simplex virus type 2 tegument proteins contain subdominant T-cell epitopes detectable in BALB/c mice after DNA immunization and infection. J Gen Virol 2009; 90:115363.
  • 40
    Aubert M, Chen Z, Lang R et al. The antiapoptotic herpes simplex virus glycoprotein J localizes to multiple cellular organelles and induces reactive oxygen species formation. J Virol 2008; 82:61729.
  • 41
    Awasthi S, Lubinski JM, Friedman HM. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 2009; 27:684553.
  • 42
    Hook LM, Huang J, Jiang M, Hodinka R, Friedman HM. Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E. J Virol 2008; 82:693541.
  • 43
    Kim M, Taylor J, Sidney J et al. Immunodominant epitopes in herpes simplex virus type 2 glycoprotein D are recognized by CD4 lymphocytes from both HSV-1 and HSV-2 seropositive subjects. J Immunol 2008; 181:660415.
  • 44
    Zhang X, Castelli FA, Zhu X, Wu M, Maillere B, BenMohamed L. Gender-dependent HLA-DR-restricted epitopes identified from herpes simplex virus type 1 glycoprotein D. Clin Vaccine Immunol 2008; 15:143649.
  • 45
    Cooper D, Mester JC, Guo M et al. Epitope mapping of full-length glycoprotein D from HSV-2 reveals a novel CD4+ CTL epitope located at the transmembrane–cytoplasmic junction. Cell Immunol 2006; 239:11320.
  • 46
    Mikloska Z, Cunningham AL. Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 1998; 79:(Pt 2):35361.
  • 47
    Johnson RM, Lancki DW, Fitch FW, Spear PG. Herpes simplex virus glycoprotein D is recognized as antigen by CD4+ and CD8+ T lymphocytes from infected mice. Characterization of T cell clones. J Immunol 1990; 145:70210.
  • 48
    Chentoufi AA, Dasgupta G, Christensen ND et al. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. J Immunol 2010; 184:256171.
  • 49
    Chentoufi AA, Zhang X, Lamberth K et al. HLA-A*0201-restricted CD8+ cytotoxic T lymphocyte epitopes identified from herpes simplex virus glycoprotein D. J Immunol 2008; 180:42637.
  • 50
    Koelle DM, Liu Z, McClurkan CL et al. Immunodominance among herpes simplex virus-specific CD8 T cells expressing a tissue-specific homing receptor. Proc Natl Acad Sci USA 2003; 100:12899904.
  • 51
    Nugent CT, McNally JM, Chervenak R, Wolcott RM, Jennings SR. Differences in the recognition of CTL epitopes during primary and secondary responses to herpes simplex virus infection in vivo. Cell Immunol 1995; 165:5564.
  • 52
    Salvucci LA, Bonneau RH, Tevethia SS. Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes. J Virol 1995; 69:112231.
  • 53
    St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL. Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. J Immunol 2011; 186:392733.
  • 54
    Posavad CM, Remington M, Mueller DE et al. Detailed characterization of T cell responses to herpes simplex virus-2 in immune seronegative persons. J Immunol 2010; 184:32509.
  • 55
    Brehm M, Samaniego LA, Bonneau RH, DeLuca NA, Tevethia SS. Immunogenicity of herpes simplex virus type 1 mutants containing deletions in one or more alpha-genes: ICP4, ICP27, ICP22, and ICP0. Virology 1999; 256:25869.
  • 56
    Halford WP, Puschel R, Gershburg E, Wilber A, Gershburg S, Rakowski B. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS ONE 2011; 6:e17748.
  • 57
    Tigges MA, Koelle D, Hartog K, Sekulovich RE, Corey L, Burke RL. Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens. J Virol 1992; 66:162234.
  • 58
    Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 2008; 319:198202.
  • 59
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 2009; 10:52430.
  • 60
    Ramachandran S, Davoli KA, Yee MB, Hendricks RL, Kinchington PR. Delaying the expression of herpes simplex virus type 1 glycoprotein B (gB) to a true late gene alters neurovirulence and inhibits the gB-CD8+ T-cell response in the trigeminal ganglion. J Virol 2010; 84:881120.
  • 61
    Mo A, Musselli C, Chen H et al. A heat shock protein based polyvalent vaccine targeting HSV-2: CD4(+) and CD8(+) cellular immunity and protective efficacy. Vaccine 2011; 29:853041.
  • 62
    Mikloska Z, Ruckholdt M, Ghadiminejad I, Dunckley H, Denis M, Cunningham AL. Monophosphoryl lipid A and QS21 increase CD8 T lymphocyte cytotoxicity to herpes simplex virus-2 infected cell proteins 4 and 27 through IFN-gamma and IL-12 production. J Immunol 2000; 164:516776.
  • 63
    Koelle DM, Magaret A, McClurkan CL et al. Phase I dose-escalation study of a monovalent heat shock protein 70-herpes simplex virus type 2 (HSV-2) peptide-based vaccine designed to prime or boost CD8 T-cell responses in HSV-naive and HSV-2-infected subjects. Clin Vaccine Immunol 2008; 15:77382.
  • 64
    Bi J, Yang H, Yan H, Song R, Fan J. Knowledge-based virtual screening of HLA-A*0201-restricted CD8(+) T-cell epitope peptides from herpes simplex virus genome. J Theor Biol 2011; 281:1339.
  • 65
    Braun RP, Payne LG, Dong L. Characterization of the IFN-gamma T-cell responses to immediate early antigens in humans with genital herpes. Virol J 2006; 3:54.
  • 66
    Maiers M, Gragert L, High-resolution KW. HLA alleles and haplotypes in the United States population. Hum Immunol 2007; 68:77988.
  • 67
    Ellis JM, Henson V, Slack R, Ng J, Hartzman RJ, Katovich Hurley C. Frequencies of HLA-A2 alleles in five U.S. population groups. Predominance of A*02011 and identification of HLA-A*0231. Hum Immunol 2000; 61:33440.
  • 68
    Klitz W, Gragert L, Maiers M et al. Four-locus high-resolution HLA typing in a sample of Mexican Americans. Tissue Antigens 2009; 74:50813.
  • 69
    Williams R, Chen YF, Endres R et al. Molecular variation at the HLA-A, B, C, DRB1, DQA1, and DQB1 loci in full heritage American Indians in Arizona: private haplotypes and their evolution. Tissue Antigens 2009; 74:52033.
  • 70
    Tu B, Mack SJ, Lazaro A et al. HLA-A, -B, -C, -DRB1 allele and haplotype frequencies in an African American population. Tissue Antigens 2007; 69:7385.
  • 71
    Mack SJ, Tu B, Lazaro A et al. HLA-A, -B, -C, and -DRB1 allele and haplotype frequencies distinguish Eastern European Americans from the general European American population. Tissue Antigens 2009; 73:1732.
  • 72
    Pascolo S. HLA class I transgenic mice: development, utilisation and improvement. Exp Opin Biol Ther 2005; 5:91938.
  • 73
    Lund O, Nielsen M, Kesmir C et al. Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 2004; 55:797810.
  • 74
    Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol 2008; 9:1.
  • 75
    Koelle DM, Liu Z, McClurkan CM et al. Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. J Clin Invest 2002; 110:53748.
  • 76
    Dudek TE, Torres-Lopez E, Crumpacker C, Knipe DM. Evidence for differences in immunologic and pathogenesis properties of herpes simplex virus 2 strains from the United States and South Africa. J Infect Dis 2011; 203:143441.
  • 77
    Watson-Jones D, Wald A, Celum C et al. Use of acyclovir for suppression of human immunodeficiency virus infection is not associated with genotypic evidence of herpes simplex virus type 2 resistance to acyclovir: analysis of specimens from three phase III trials. J Clin Microbiol 2010; 48:3496503.
  • 78
    Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2006; 107:2294302.
  • 79
    Dong L, Li P, Oenema T, McClurkan CL, Koelle DM. Public TCR use by herpes simplex virus-2-specific human CD8 CTLs. J Immunol 2010; 184:306371.
  • 80
    Chentoufi AA, Binder NR, Berka N et al. Asymptomatic human CD4+ cytotoxic T-cell epitopes identified from herpes simplex virus glycoprotein B. J Virol 2008; 82:11792802.
  • 81
    Posavad CM, Wald A, Hosken N et al. T cell immunity to herpes simplex viruses in seronegative subjects: silent infection or acquired immunity? J Immunol 2003; 170:43808.
  • 82
    Stanberry LR, Spruance SL, Cunningham AL et al. D-adjuvant vaccine to prevent genital herpes. N Engl J Med 2002; 347:165261.
  • 83
    Cohen J. Immunology. Painful failure of promising genital herpes vaccine. Science 2010; 330:304.
  • 84
    BenMohamed L, Bertrand G, McNamara CD et al. Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J Virol 2003; 77:946373.
  • 85
    Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004; 4:21122.
  • 86
    Liu L, Fuhlbrigge RC, Karibian K, Tian T, Kupper TS. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 2006; 25:51120.
  • 87
    Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv Immunol 1999; 72:20953.
  • 88
    Koelle DM, Gonzalez JC, Johnson AS. Homing in on the cellular immune response to HSV-2 in humans. Am J Reprod Immunol 2005; 53:17281.
  • 89
    Koelle DM, Schomogyi M, Corey L. Antigen-specific T cells localize to the uterine cervix in women with genital herpes simplex virus type 2 infection. J Infect Dis 2000; 182:66270.
  • 90
    Bedoui S, Whitney PG, Waithman J et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009; 10:48895.
  • 91
    Jing L, McCaughey SM, Davies DH et al. ORFeome approach to the clonal, HLA allele-specific CD4 T-cell response to a complex pathogen in humans. J Immunol Methods 2009; 347:3645.
  • 92
    Posavad CM, Magaret AS, Zhao L, Mueller DE, Wald A, Corey L. Development of an interferon-gamma ELISPOT assay to detect human T cell responses to HSV-2. Vaccine 2011; 29:705866.
  • 93
    Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 2003; 18:593603.
  • 94
    Danke NA, Koelle DM, Kwok WW. Persistence of herpes simplex virus type 2 VP16-specific CD4+ T cells. Hum Immunol 2005; 66:77787.
  • 95
    Osorio Y, Mott KR, Jabbar AM et al. Epitope mapping of HSV-1 glycoprotein K (gK) reveals a T cell epitope located within the signal domain of gK. Virus Res 2007; 128:7180.
  • 96
    Mott KR, Chentoufi AA, Carpenter D, BenMohamed L, Wechsler SL, Ghiasi H. The role of a glycoprotein K (gK) CD8+ T-cell epitope of herpes simplex virus on virus replication and pathogenicity. Invest Ophthalmol Vis Sci 2009; 50:290312.
  • 97
    Haynes JR, Arrington J, Dong L, Braun RP, Payne LG. Potent protective cellular immune responses generated by a DNA vaccine encoding HSV-2 ICP27 and the E. coli heat labile enterotoxin. Vaccine 2006; 24:501626.