• 1
    Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 2002; 99:102313.
  • 2
    Zhong LT, Manzi A, Skowronski E et al. A monoclonal antibody that induces neuronal apoptosis binds a metastasis marker. Cancer Res 2001; 61:57418.
  • 3
    Zhang G, Zhang H, Wang Q et al. Suppression of human prostate tumor growth by a unique prostate-specific monoclonal antibody F77 targeting a glycolipid marker. Proc Natl Acad Sci USA 2010; 107:7327.
  • 4
    Loo D, Pryer N, Young P et al. The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenografts in vivo. Mol Cancer Ther 2007; 6:85665.
  • 5
    Alvarez-Rueda N, Leprieur S, Clemenceau B et al. Binding activities and antitumor properties of a new mouse/human chimeric antibody specific for GD2 ganglioside antigen. Clin Cancer Res 2007; 13:5613s20s.
  • 6
    Hellstrom I, Garrigues HJ, Garrigues U, Hellstrom KE. Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related cell surface antigens. Cancer Res 1990; 50:218390.
  • 7
    Chou HH, Takematsu H, Diaz S et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo–Pan divergence. Proc Natl Acad Sci USA 1998; 95:117516.
  • 8
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell, 4th edn. New York: Garland Science, 2002.
  • 9
    Ichikawa S, Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 1998; 8:198202.
  • 10
    Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P. UDP-galactose: ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 1998; 273:258808.
  • 11
    Lannert H, Bunning C, Jeckel D, Wieland FT. Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett 1994; 342:916.
  • 12
    Won JS, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J Neurochem 2007; 103 (Suppl. 1):18091.
  • 13
    Hettmer S, McCarter R, Ladisch S, Kaucic K. Alterations in neuroblastoma ganglioside synthesis by induction of GD1b synthase by retinoic acid. Br J Cancer 2004; 91:38997.
  • 14
    Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science 2010; 327:4650.
  • 15
    Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 1998; 273:91308.
  • 16
    Kojima N, Hakomori S. Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid–glycolipid interaction. J Biol Chem 1991; 266:175528.
  • 17
    Suzuki C, Kojima N. A cholesterol-independent membrane microdomain serves as a functional counter-receptor for E-selectin at the Colo201 cell surface and initiates signalling on E-selectin binding. J Biochem 2007; 142:5564.
  • 18
    Thorne RF, Mhaidat NM, Ralston KJ, Burns GF. Shed gangliosides provide detergent-independent evidence for type-3 glycosynapses. Biochem Biophys Res Commun 2007; 356:30611.
  • 19
    Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S. A specific microdomain (‘glycosynapse 3’) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 2005; 280:3554553.
  • 20
    Zheng M, Fang H, Tsuruoka T, Tsuji T, Sasaki T, Hakomori S. Regulatory role of GM3 ganglioside in alpha 5 beta 1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells. J Biol Chem 1993; 268:221722.
  • 21
    Zheng M, Fang H, Hakomori S. Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. J Biol Chem 1994; 269:1232531.
  • 22
    Ono M, Handa K, Withers DA, Hakomori S. Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem Biophys Res Commun 2000; 279:74450.
  • 23
    Hakomori S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 1985; 45:240514.
  • 24
    Reis CA, Osorio H, Silva L, Gomes C, David L. Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 2010; 63:3229.
  • 25
    Kawamura YI, Toyota M, Kawashima R et al. DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 2008; 135:14251e3.
  • 26
    Itai S, Nishikata J, Yoneda T et al. Tissue distribution of 2-3 and 2-6 sialyl Lewis A antigens and significance of the ratio of two antigens for the differential diagnosis of malignant and benign disorders of the digestive tract. Cancer 1991; 67:157687.
  • 27
    Kannagi R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression – the Warburg effect revisited. Glycoconj J 2004; 20:35364.
  • 28
    Wei J, Cui L, Liu F et al. E-selectin and sialyl Lewis X expression is associated with lymph node metastasis of invasive micropapillary carcinoma of the breast. Int J Surg Pathol 2010; 18:193200.
  • 29
    St Hill CA, Baharo-Hassan D, Farooqui M. C2-O-sLe glycoproteins are E-selectin ligands that regulate invasion of human colon and hepatic carcinoma cells. PLoS ONE 2011; 6:e16281.
  • 30
    Kannagi R, Yin J, Miyazaki K, Izawa M. Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants – Hakomori's concepts revisited. Biochim Biophys Acta 2008; 1780:52531.
  • 31
    Koike T, Kimura N, Miyazaki K et al. Hypoxia induces adhesion molecules on cancer cells: a missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc Natl Acad Sci USA 2004; 101:81327.
  • 32
    Ogawa J, Inoue H, Koide S. Glucose-transporter-type-I-gene amplification correlates with sialyl-Lewis-X synthesis and proliferation in lung cancer. Int J Cancer 1997; 74:18992.
  • 33
    Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem 2008; 143:7259.
  • 34
    Moriwaki K, Miyoshi E. Fucosylation and gastrointestinal cancer. World J Hepatol 2010; 2:15161.
  • 35
    Tsuchida T, Saxton RE, Morton DL, Irie RF. Gangliosides of human melanoma. Cancer 1989; 63:116674.
  • 36
    Dubois C, Magnani JL, Grunwald GB et al. Monoclonal antibody 18B8, which detects synapse-associated antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer). J Biol Chem 1986; 261:382630.
  • 37
    Hamilton WB, Helling F, Lloyd KO, Livingston PO. Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int J Cancer 1993; 53:56673.
  • 38
    Brodin T, Thurin J, Stromberg N, Karlsson KA, Sjogren HO. Production of oligosaccharide-binding monoclonal antibodies of diverse specificities by immunization with purified tumor-associated glycolipids inserted into liposomes with lipid A. Eur J Immunol 1986; 16:9516.
  • 39
    Yamada N, Chung YS, Takatsuka S et al. Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line. Br J Cancer 1997; 76:5827.
  • 40
    Jeschke U, Mylonas I, Shabani N et al. Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res 2005; 25:161522.
  • 41
    Charpin C, Bhan AK, Zurawski VR Jr, Scully RE. Carcinoembryonic antigen (CEA) and carbohydrate determinant 19-9 (CA 19-9) localization in 121 primary and metastatic ovarian tumors: an immunohistochemical study with the use of monoclonal antibodies. Int J Gynecol Pathol 1982; 1:23145.
  • 42
    Magnani JL, Nilsson B, Brockhaus M et al. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 1982; 257:143659.
  • 43
    Nakagoe T, Sawai T, Tsuji T et al. Circulating sialyl Lewis(x), sialyl Lewis(a), and sialyl Tn antigens in colorectal cancer patients: multivariate analysis of predictive factors for serum antigen levels. J Gastroenterol 2001; 36:16672.
  • 44
    Mujoo K, Cheresh DA, Yang HM, Reisfeld RA. Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res 1987; 47:1098104.
  • 45
    Wu ZL, Schwartz E, Seeger R, Ladisch S. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res 1986; 46:4403.
  • 46
    Yoshida S, Kawaguchi H, Sato S, Ueda R, Furukawa K. An anti-GD2 monoclonal antibody enhances apoptotic effects of anti-cancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res 2002; 93:81624.
  • 47
    Portoukalian J, Zwingelstein G, Dore JF. Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur J Biochem 1979; 94:1923.
  • 48
    Distler U, Souady J, Hulsewig M et al. Shiga toxin receptor Gb3Cer/CD77: tumor-association and promising therapeutic target in pancreas and colon cancer. PLoS ONE 2009; 4:e6813.
  • 49
    Chang F, Li R, Ladisch S. Shedding of gangliosides by human medulloblastoma cells. Exp Cell Res 1997; 234:3416.
  • 50
    Sa G, Das T, Moon C et al. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells. Cancer Res 2009; 69:3095104.
  • 51
    Devine PL, Clark BA, Birrell GW et al. The breast tumor-associated epitope defined by monoclonal antibody 3E1·2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res 1991; 51:582636.
  • 52
    Oliva JP, Valdes Z, Casaco A et al. Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with (99m)Tc. Breast Cancer Res Treat 2006; 96:11521.
  • 53
    Higashi H, Sasabe T, Fukui Y, Maru M, Kato S. Detection of gangliosides as N-glycolylneuraminic acid-specific tumor-associated Hanganutziu–Deicher antigen in human retinoblastoma cells. Jpn J Cancer Res 1988; 79:9526.
  • 54
    Bardor M, Nguyen DH, Diaz S, Varki A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 2005; 280:422837.
  • 55
    Gabri MR, Otero LL, Gomez DE, Alonso DF. Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. J Exp Clin Cancer Res 2009; 28:14654.
  • 56
    de Leon J, Fernandez A, Mesa C, Clavel M, Fernandez LE. Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol Immunother 2006; 55:44350.
  • 57
    Buskas T, Thompson P, Boons GJ. Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem Commun (Camb) 2009; 36:533549.
  • 58
    Mond JJ, Vos Q, Lees A, Snapper CM. T cell independent antigens. Curr Opin Immunol 1995; 7:34954.
  • 59
    Tolar P, Hanna J, Krueger PD, Pierce SK. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 2009; 30:4455.
  • 60
    Cipolla L, Peri F, Airoldi C. Glycoconjugates in cancer therapy. Anticancer Agents Med Chem 2008; 8:92121.
  • 61
    Ragupathi G, Livingston PO, Hood C et al. Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone–keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin Cancer Res 2003; 9:521420.
  • 62
    Krug LM, Ragupathi G, Hood C et al. Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res 2004; 10:6094100.
  • 63
    Livingston PO. Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside–KLH conjugate vaccines. Immunol Rev 1995; 145:14766.
  • 64
    Livingston PO, Wong GY, Adluri S et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol 1994; 12:103644.
  • 65
    Kitamura K, Livingston PO, Fortunato SR et al. Serological response patterns of melanoma patients immunized with a GM2 ganglioside conjugate vaccine. Proc Natl Acad Sci USA 1995; 92:28059.
  • 66
    Helling F, Zhang S, Shang A et al. GM2–KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 1995; 55:27838.
  • 67
    Slovin SF, Keding SJ, Ragupathi G. Carbohydrate vaccines as immunotherapy for cancer. Immunol Cell Biol 2005; 83:41828.
  • 68
    Eggermont AM, Suciu S, Rutkowski PM et al. EOTRC Melanoma Group, randomized phase III trial comparing postoperative adjuvant ganglioside GM2–KLH/QS-21 vaccination versus observation in stage II (T3-T4N0M0) melanoma: final results of study EORTC 18961. J Clin Oncol 2010; 28:201218.
  • 69
    Chapman PB, Wu D, Ragupathi G et al. Sequential immunization of melanoma patients with GD3 ganglioside vaccine and anti-idiotypic monoclonal antibody that mimics GD3 ganglioside. Clin Cancer Res 2004; 10:471723.
  • 70
    Giaccone G, Debruyne C, Felip E et al. Phase III study of adjuvant vaccination with Bec2/bacille Calmette–Guérin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J Clin Oncol 2005; 23:685464.
  • 71
    Hernandez AM, Rodriguez N, Gonzalez JE et al. Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. J Immunol 2011; 186:373544.
  • 72
    Fernandez LE, Gabri MR, Guthmann MD et al. NGcGM3 ganglioside: a privileged target for cancer vaccines. Clin Dev Immunol 2010; 2010:814397405.
  • 73
    Fuentes D, Avellanet J, Garcia A et al. Combined therapeutic effect of a monoclonal anti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model. Breast Cancer Res Treat 2010; 120:37989.
  • 74
    Alfonso S, Diaz RM, de la Torre A et al. 1E10 anti-idiotype vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol Ther 2007; 6:184752.
  • 75
    Guthmann MD, Castro MA, Cinat G et al. Cellular and humoral immune response to N-Glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J Immunother 2006; 29:21523.
  • 76
    Hernandez AM, Toledo D, Martinez D et al. Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody. J Immunol 2008; 181:662534.
  • 77
    Osorio M, Gracia E, Rodriguez E et al. Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients: results of a Phase Ib/IIa study. Cancer Biol Ther 2008; 7:48895.
  • 78
    Livingston PO, Ritter G, Calves MJ. Antibody response after immunization with the gangliosides GM1, GM2, GM3, GD2 and GD3 in the mouse. Cancer Immunol Immunother 1989; 29:17984.
  • 79
    Estevez F, Carr A, Solorzano L et al. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 1999; 18:1907.
  • 80
    Guthmann MD, Bitton RJ, Carnero AJ et al. Active specific immunotherapy of melanoma with a GM3 ganglioside-based vaccine: a report on safety and immunogenicity. J Immunother 2004; 27:44251.
  • 81
    Ragupathi G, Damani P, Srivastava G et al. Synthesis of sialyl Lewis(a) (sLe (a), CA19-9) and construction of an immunogenic sLe(a) vaccine. Cancer Immunol Immunother 2009; 58:1397405.
  • 82
    Sabbatini PJ, Kudryashov V, Ragupathi G et al. Immunization of ovarian cancer patients with a synthetic Lewis(y)-protein conjugate vaccine: a phase 1 trial. Int J Cancer 2000; 87:7985.
  • 83
    Cox D, Fox L, Tian R et al. Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 2009; 4:e5325.
  • 84
    Blanca IR, Bere EW, Young HA, Ortaldo JR. Human B cell activation by autologous NK cells is regulated by CD40–CD40 ligand interaction: role of memory B cells and CD5+ B cells. J Immunol 2001; 167:61329.
  • 85
    Leadbetter EA, Brigl M, Illarionov P et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA 2008; 105:833944.
  • 86
    Dullforce P, Sutton DC, Heath AW. Enhancement of T cell-independent immune responses in vivo by CD40 antibodies. Nat Med 1998; 4:8891.
  • 87
    Kitamura K, Stockert E, Garin-Chesa P et al. Specificity analysis of blood group Lewis-y (Ley) antibodies generated against synthetic and natural Ley determinants. Proc Natl Acad Sci USA 1994; 91:1295761.
  • 88
    Tolcher A, Sugarman S, Gelmon K et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 1999; 17:47884.
  • 89
    Pai LH, Wittes R, Setser A, Willingham MC, Pastan I. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med 1996; 2:3503.
  • 90
    Manimala JC, Roach TA, Li Z, Gildersleeve JC. High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. Glycobiology 2007; 17:17C23C.
  • 91
    Durrant LG, Harding SJ, Green NH, Buckberry LD, Parsons T. A new anticancer glycolipid monoclonal antibody, SC104, which directly induces tumor cell apoptosis. Cancer Res 2006; 66:59019.
  • 92
    Sawada R, Sun SM, Wu X et al. Human monoclonal antibodies to sialyl-Lewisa (CA19·9) with potent CDC, ADCC, and antitumor activity. Clin Cancer Res 2011; 17:102432.
  • 93
    Barker E, Mueller BM, Handgretinger R, Herter M, Yu AL, Reisfeld RA. Effect of a chimeric anti-ganglioside GD2 antibody on cell-mediated lysis of human neuroblastoma cells. Cancer Res 1991; 51:1449.
  • 94
    Frost JD, Hank JA, Reaman GH et al. A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children's Cancer Group. Cancer 1997; 80:31733.
  • 95
    Kramer K, Humm JL, Souweidane MM et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol 2007; 25:546570.
  • 96
    Nakamura K, Tanaka Y, Shitara K, Hanai N. Construction of humanized anti-ganglioside monoclonal antibodies with potent immune effector functions. Cancer Immunol Immunother 2001; 50:27584.
  • 97
    Kramer K, Gerald WL, Kushner BH, Larson SM, Hameed M, Cheung NK. Disialoganglioside G(D2) loss following monoclonal antibody therapy is rare in neuroblastoma. Clin Cancer Res 1998; 4:21359.
  • 98
    Yang RK, Sondel PM. Anti-GD2 Strategy in the Treatment of Neuroblastoma. Drugs Future 2010; 35:66580.
  • 99
    Modak S, Cheung NK. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Invest 2007; 25:6777.
  • 100
    Cheresh DA, Honsik CJ, Staffileno LK, Jung G, Reisfeld RA. Disialoganglioside GD3 on human melanoma serves as a relevant target antigen for monoclonal antibody-mediated tumor cytolysis. Proc Natl Acad Sci USA 1985; 82:51559.
  • 101
    Chapman PB, Yuasa H, Houghton AN. Homophilic binding of mouse monoclonal antibodies against GD3 ganglioside. J Immunol 1990; 145:8918.
  • 102
    Kirkwood JM, Mascari RA, Edington HD et al. Analysis of therapeutic and immunologic effects of R(24) anti-GD3 monoclonal antibody in 37 patients with metastatic melanoma. Cancer 2000; 88:2693702.
  • 103
    Kaminski MJ, MacKenzie CR, Mooibroek MJ et al. The role of homophilic binding in anti-tumor antibody R24 recognition of molecular surfaces. Demonstration of an intermolecular beta-sheet interaction between vh domains. J Biol Chem 1999; 274:5597604.
  • 104
    Fernandes DM, Baird AM, Berg LJ, Rock KL. A monoclonal antibody reactive with a 40-kDa molecule on fetal thymocytes and tumor cells blocks proliferation and stimulates aggregation and apoptosis. J Immunol 1999; 163:130614.
  • 105
    Retter MW, Johnson JC, Peckham DW et al. Characterization of a proapoptotic antiganglioside GM2 monoclonal antibody and evaluation of its therapeutic effect on melanoma and small cell lung carcinoma xenografts. Cancer Res 2005; 65:642534.
  • 106
    Carr A, Mullet A, Mazorra Z et al. A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 2000; 19:2417.
  • 107
    Carr A, Mesa C, Arango M, Vazquez AM, Fernandez LE. In vivo and in vitro anti-tumor effect of 14F7 monoclonal antibody. Hybrid Hybridomics 2002; 21:4638.
  • 108
    Coberly SK, Chen FZ, Armanini MP et al. The RAV12 monoclonal antibody recognizes the N-linked glycotope RAAG12: expression in human normal and tumor tissues. Arch Pathol Lab Med 2009; 133:140312.
  • 109
    Li JC, Li R. RAV12 accelerates the desensitization of Akt/PKB pathway of insulin-like growth factor I receptor signaling in COLO205. Cancer Res 2007; 67:885664.
  • 110
    Burris HA III, Rosen LS, Rocha-Lima CM et al. Phase 1 experience with an anti-glycotope monoclonal antibody, RAV12, in recurrent adenocarcinoma. Clin Cancer Res 2010; 16:167381.
  • 111
    Mazorra Z, Mesa C, Fernandez A, Fernandez L. Immunization with GM3 ganglioside nanoparticulated vaccine confers an effector CD8+ T cells-mediated protection against melanoma B16 challenge. Cancer Immunol Immunother 2008; 57:177180.
  • 112
    Hakomori S. The glycosynapse. Proc Natl Acad Sci USA 2002; 99:22532.