SEARCH

SEARCH BY CITATION

References

  • 1
    Stene LC, Tuomilehto J, Rewers M. Global epidemiology of type 1 diabetes. In: Ekoé J-M, Rewers M, Williams R, Zimmet P, eds. The epidemiology of diabetes mellitus. Chichester: Wiley-Blackwell, 2008:35583.
  • 2
    Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW. Viral antibodies in diabetes mellitus. BMJ 1969; 3:62730.
  • 3
    Yoon JW, Austin M, Onodera T, Notkins AL. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979; 300:11739.
  • 4
    Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358:2219.
  • 5
    Shibasaki S, Imagawa A, Tauriainen S et al. Expression of toll-like receptors in the pancreas of recent-onset fulminant type 1 diabetes. Endocr J 2010; 57:2119.
  • 6
    Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:511.
  • 7
    Lind K, Hühn MH, Flodström-Tullberg M. Immunology in the clinic review series; focus on type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible role in regulating type 1 diabetes. Clin Exp Immunol 2012; 168:308.
  • 8
    Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA. Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 2000; 49:70811.
  • 9
    Horwitz MS, Fine C, Ilic A, Sarvetnick N. Requirements for viral-mediated autoimmune diabetes: β-cell damage and immune infiltration. J Autoimmun 2001; 16:2117.
  • 10
    Christen U, Edelmann KH, McGavern DB et al. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 2004; 114:12908.
  • 11
    Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 2004; 329:38194.
  • 12
    Stene LC, Oikarinen S, Hyöty H et al. Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 2010; 59:317480.
  • 13
    Craighead JE. The role of viruses in the pathogenesis of pancreatic disease and diabetes mellitus. Prog Med Virol 1975; 19:161214.
  • 14
    Gamble DR. The epidemiology of insulin dependent diabetes, with particular reference to the relationship of virus infection to its etiology. Epidemiol Rev 1980; 2:4970.
  • 15
    Jun HS, Yoon JW. A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev 2003; 19:831.
  • 16
    Varela-Calvino R, Peakman M. Enteroviruses and type 1 diabetes. Diabetes Metab Res Rev 2003; 19:43141.
  • 17
    von Herrath M. Can we learn from viruses how to prevent type 1 diabetes?: the role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies. Diabetes 2009; 58:211.
  • 18
    Kemball CC, Alirezaei M, Whitton JL. Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. Future Microbiol 2010; 5:132947.
  • 19
    Tracy S, Drescher KM, Jackson JD, Kim K, Kono K. Enteroviruses, type 1 diabetes and hygiene: a complex relationship. Rev Med Virol 2010; 20:10616.
  • 20
    Morens DM, Pallansch MA. Epidemiology. In: Rotbart HA, ed. Human enterovirus infections. Washington, DC: ASM Press, 1995:323.
  • 21
    Roivainen M, Ylipaasto P, Savolainen C, Galama J, Hovi T, Otonkoski T. Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains. Diabetologia 2002; 45:693702.
  • 22
    Melnick JL. Poliovirus and other enteroviruses. In: Evans AS, Kaslow RA, eds. Viral infections in humans: epidemiology and control. New York: Plenum Press, 1997:583663.
  • 23
    Modlin JF. Coxsackieviruses, echoviruses, and newer enteroviruses. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. Philadelphia, PA: Elsevier, 2005:214861.
  • 24
    Pallansch MA, Roos RP. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM, eds. Field's virology. Philadelphia, PA: Lippincott Williams & Wilkins, 2007:83993.
  • 25
    Kogon A, Spigland I, Frothingham TE et al. The virus watch program: a continuing surveillance of viral infections in metropolitan New York families. VII. Observations on viral excretion, seroimmunity, intrafamilial spread and illness association in coxsackie and echovirus infections. Am J Epidemiol 1969; 89:5161.
  • 26
    Witsø E, Palacios G, Cinek O et al. Natural circulation of human enteroviruses: high prevalence of human enterovirus A infections. J Clin Microbiol 2006; 44:4095100.
  • 27
    Oberste MS. Comparative genomics of the coxsackie B viruses and related enteroviruses. Curr Top Microbiol Immunol 2008; 323:3347.
  • 28
    Salminen KK, Vuorinen T, Oikarinen S et al. Isolation of enterovirus strains from children with preclinical Type 1 diabetes. Diabet Med 2004; 21:15664.
  • 29
    Prather SL, Dagan R, Jenista JA, Menegus MA. The isolation of enteroviruses from blood: a comparison of four processing methods. J Med Virol 1984; 14:2217.
  • 30
    Schulte BM, Bakkers J, Lanke KH et al. Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection. Viral Immunol 2010; 23:99104.
  • 31
    Ylipaasto P, Klingel K, Lindberg AM et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 2004; 47:22539.
  • 32
    Dotta F, Censini S, van Halteren AG et al. Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 2007; 104:511520.
  • 33
    Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52:114351.
  • 34
    Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 2011; 342:d35.
  • 35
    Foy CA, Quirke P, Williams DJ et al. A search for candidate viruses in type 1 diabetic pancreas using the polymerase chain reaction. Diabet Med 1994; 11:5649.
  • 36
    Roivainen M, Klingel K. Virus infections and type 1 diabetes risk. Curr Diab Rep 2010; 10:3506.
  • 37
    Yin H, Berg AK, Tuvemo T, Frisk G. Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 2002; 51:196471.
  • 38
    Piqueur MA, Verstrepen WA, Bruynseels P, Mertens AH. Improvement of a real-time RT–PCR assay for the detection of enterovirus RNA. Virol J 2009; 6:95.
  • 39
    Kilpatrick DR, Yang CF, Ching K et al. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription–PCR using degenerate primers and probes containing deoxyinosine residues. J Clin Microbiol 2009; 47:193941.
  • 40
    Oberste MS, Penaranda S, Rogers SL, Henderson E, Nix WA. Comparative evaluation of Taqman real-time PCR and semi-nested VP1 PCR for detection of enteroviruses in clinical specimens. J Clin Virol 2010; 49:734.
  • 41
    Simonen-Tikka ML, Pflüeger M, Klemola P et al. Human enterovirus infections in children at increased risk for type 1 diabetes: the Babydiet study. Diabetologia 2011; 54:29953002.
  • 42
    Green J, Casabonne D, Newton R. Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case–control studies. Diabet Med 2004; 21:50714.
  • 43
    Samuelson A, Glimåker M, Skoog E, Cello J, Forsgren M. Diagnosis of enteroviral meningitis with IgG-EIA using heat-treated virions and synthetic peptides as antigens. J Med Virol 1993; 40:2717.
  • 44
    Hober D, Sane F, Jaïdane H, Riedweg K, Goffard A, Desailloud R. Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with Coxsackievirus-B in the pathogenesis of type 1 diabetes. Clin Exp Immunol 2012; 168:4751.
  • 45
    Samuelson A, Skoog E, Forsgren M. Aspects of the serodiagnosis of enterovirus infections by ELISA. Serodiagn Immunother Infect Dis 1990; 4:395406.
  • 46
    Salminen K, Sadeharju K, Lönnrot M et al. Enterovirus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. J Med Virol 2003; 69:918.
  • 47
    Sadeharju K, Hämäläinen AM, Knip M et al. Enterovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial. Clin Exp Immunol 2003; 132:2717.
  • 48
    Witsø E, Tapia G, Cinek O, Pociot F, Stene LC, Rønningen KS. Polymorphisms in the innate immune IFIH1 gene, frequency of enterovirus in monthly fecal samples during infancy, and islet autoimmunity. PLoS ONE 2011; 6:e27781.
  • 49
    Egger M, Davey Smith G, Altman DG. Systematic reviews in health care: meta-analysis in context. London: BMJ Publishing Group, 2001.
  • 50
    Clements GB, Galbraith DN, Taylor KW. Coxsackie B virus infection and onset of childhood diabetes. Lancet 1995; 346:2213.
  • 51
    Andréoletti L, Hober D, Hober-Vandenberghe C et al. Coxsackie B virus infection and β cell autoantibodies in newly diagnosed IDDM adult patients. Clin Diagn Virol 1998; 9:12533.
  • 52
    Nairn C, Galbraith DN, Taylor KW, Clements GB. Enterovirus variants in the serum of children at the onset of Type 1 diabetes mellitus. Diabet Med 1999; 16:50913.
  • 53
    Chehadeh W, Weill J, Vantyghem MC et al. Increased level of interferon-α in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 2000; 181:192939.
  • 54
    Lönnrot M, Salminen K, Knip M et al. Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. Childhood Diabetes in Finland (DiMe) Study Group. J Med Virol 2000; 61:21420.
  • 55
    Coutant R, Carel JC, Lebon P, Bougneres PF, Palmer P, Cantero-Aguilar L. Detection of enterovirus RNA sequences in serum samples from autoantibody-positive subjects at risk for diabetes. Diabet Med 2002; 19:9689.
  • 56
    Moya-Suri V, Schlosser M, Zimmermann K, Rjasanowski I, Gurtler L, Mentel R. Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1-diabetes-associated autoantibodies. J Med Microbiol 2005; 54:87983.
  • 57
    Sarmiento L, Cabrera-Rode E, Lekuleni L et al. Occurrence of enterovirus RNA in serum of children with newly diagnosed type 1 diabetes and islet cell autoantibody-positive subjects in a population with a low incidence of type 1 diabetes. Autoimmunity 2007; 40:5405.
  • 58
    Oikarinen S, Martiskainen M, Tauriainen S et al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 2011; 60:2769.
  • 59
    Foy CA, Quirke P, Lewis FA, Futers TS, Bodansky HJ. Detection of common viruses using the polymerase chain reaction to assess levels of viral presence in type 1 (insulin-dependent) diabetic patients. Diabet Med 1995; 12:10028.
  • 60
    Craig ME, Howard NJ, Silink M, Rawlinson WD. Reduced frequency of HLA DRB1*03–DQB1*02 in children with type 1 diabetes associated with enterovirus RNA. J Infect Dis 2003; 187:156270.
  • 61
    Chistiakov DA, Voronova NV, Savost'Anov KV, Turakulov RI. Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I : C)-induced interferon-beta production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum Immunol 2010; 71:112834.
  • 62
    Lempainen J, Tauriainen S, Vaarala O et al. Interaction of enterovirus infection and Cow's milk-based formula nutrition in type 1 diabetes-associated autoimmunity. Diabetes Metab Res Rev 2011 (in press).
  • 63
    Helfand RF, Gary HE, Jr, Freeman CY, Anderson LJ, Pallansch MA. Serologic evidence of an association between enteroviruses and the onset of type 1 diabetes mellitus. Pittsburgh Diabetes Research Group. J Infect Dis 1995; 172:120611.
  • 64
    Tapia G, Cinek O, Rasmussen T et al. Human enterovirus RNA in monthly fecal samples and islet autoimmunity in Norwegian children with high genetic risk for type 1 diabetes: the MIDIA study. Diabetes Care 2011; 34:1515.
  • 65
    Füchtenbusch M, Irnstetter A, Jäger G, Ziegler AG. No evidence for an association of coxsackie virus infections during pregnancy and early childhood with development of islet autoantibodies in offspring of mothers or fathers with type 1 diabetes. J Autoimmun 2001; 17:33340.
  • 66
    Graves PM, Rotbart HA, Nix WA et al. Prospective study of enteroviral infections and development of beta-cell autoimmunity. Diabetes Autoimmunity Study In The Young (DAISY). Diabetes Res Clin Pract 2003; 59:5161.
  • 67
    Lönnrot M, Sjöroos M, Salminen K, Maaronen M, Hyypiä T, Hyöty H. Diagnosis of enterovirus and rhinovirus infections by RT–PCR and time-resolved fluorometry with lanthanide chelate labeled probes. J Med Virol 1999; 59:37884.
  • 68
    Rotbart HA, Sawyer MH, Fast S et al. Diagnosis of enteroviral meningitis by using PCR with a colorimetric microwell detection assay. J Clin Microbiol 1994; 32:25902.
  • 69
    Cinek O, Witsø E, Jeansson S et al. Longitudinal observation of enterovirus and adenovirus in stool samples from Norwegian infants with the highest genetic risk of type 1 diabetes. J Clin Virol 2006; 35:3340.
  • 70
    Verstrepen WA, Kuhn S, Kockx MM, Van De Vyvere ME, Mertens AH. Rapid detection of enterovirus RNA in cerebrospinal fluid specimens with a novel single-tube real-time reverse transcription–PCR assay. J Clin Microbiol 2001; 39:40936.
  • 71
    McIver CJ, Jacques CF, Chow SS et al. Development of multiplex PCRs for detection of common viral pathogens and agents of congenital infections. J Clin Microbiol 2005; 43:510210.
  • 72
    Stene LC, Hyöty H. A novel approach to the investigation of potential precipitating factors in type 1 diabetes. Pediatr Diabetes 2006; 7:1435.
  • 73
    Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards regression model. Annu Rev Public Health 1999; 20:14557.
  • 74
    Hyöty H, Hiltunen M, Knip M et al. A prospective study of the role of Coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Diabetes 1995; 44:6527.
  • 75
    Lönnrot M, Korpela K, Knip M et al. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes 2000; 49:13148.
  • 76
    Sadeharju K, Lönnrot M, Kimpimäki T et al. Enterovirus antibody levels during the first two years of life in prediabetic autoantibody-positive children. Diabetologia 2001; 44:81823.
  • 77
    Dahlquist GG, Ivarsson S, Lindberg B, Forsgren M. Maternal enteroviral infection during pregnancy as a risk factor for childhood IDDM. A population-based case–control study. Diabetes 1995; 44:40813.
  • 78
    Dahlquist GG, Boman JE, Juto P. Enteroviral RNA and IgM antibodies in early pregnancy and risk for childhood-onset IDDM in offspring [Letter]. Diabetes Care 1999; 22:3645.
  • 79
    Dahlquist GG, Forsberg J, Hagenfeldt L, Boman J, Juto P. Increased prevalence of enteroviral RNA in blood spots from newborn children who later developed type 1 diabetes: a population-based case–control study [Letter]. Diabetes Care 2004; 27:2856.
  • 80
    Viskari HR, Roivainen M, Reunanen A et al. Maternal first-trimester enterovirus infection and future risk of type 1 diabetes in the exposed fetus. Diabetes 2002; 51:256871.
  • 81
    Viskari H, Ludvigsson J, Uibo R et al. Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 2005; 48:12807.
  • 82
    Kolb H, Elliott RB. Increasing incidence of IDDM a consequence of improved hygiene? Diabetologia 1994; 37:729.
  • 83
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347:91120.
  • 84
    Gale EA. A missing link in the hygiene hypothesis? Diabetologia 2002; 45:58894.
  • 85
    Filippi CM, Estes EA, Oldham JE, von Herrath MG. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 2009; 119:151523.
  • 86
    Evans AS. Causation and disease: the Henle–Koch postulates revisited. Yale J Biol Med 1976; 49:17595.
  • 87
    Kircher M, Kelso J. High-throughput DNA sequencing – concepts and limitations. Bioessays 2010; 32:52436.
  • 88
    Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet 2010; 11:3146.
  • 89
    Lipkin WI. Microbe hunting. Microbiol Mol Biol Rev 2010; 74:36377.
  • 90
    Breitbart M, Haynes M, Kelley S et al. Viral diversity and dynamics in an infant gut. Res Microbiol 2008; 159:36773.
  • 91
    Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog 2008; 4:e1000011.
  • 92
    Svraka S, Rosario K, Duizer E, van der Avoort H, Breitbart M, Koopmans M. Metagenomic sequencing for virus identification in a public-health setting. J Gen Virol 2010; 91:284656.
  • 93
    The TEDDY Study Group. The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 2007; 8:28698.
  • 94
    Chapman NM, Kim KS. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol 2008; 323:27592.