SEARCH

SEARCH BY CITATION

References

  • 1
    Menconi F, Oppenheim Y, Tomer Y. Grave's disease. In: Shoenfeld Y, Cervera R, Gershwin M, eds. Diagnostic criteria in autoimmune diseases. Totowa: Humana Press, 2008:2315.
  • 2
    Weetman A. Chronic autoimmune thyroiditis. In: Braverman L, Utiger R, eds. The thyroid: a fundamental and clinical text. Philadelphia: Lippincott Williams & Wilkins, 2000:72132.
  • 3
    Amino N, Hagen SR, Yamada N, Refetoff S. Measurement of circulating thyroid microsomal antibodies by the tanned red cell haemagglutination technique: its usefulness in the diagnosis of autoimmune thyroid diseases. Clin Endocrinol (Oxf) 1976; 5:11525.
  • 4
    Yoshida H, Amino N, Yagawa K et al. Association of serum antithyroid antibodies with lymphocytic infiltration of the thyroid gland: studies of seventy autopsied cases. J Clin Endocrinol Metab 1978; 46:85962.
  • 5
    Zhang X, Yazaki J, Sundaresan A et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 2006; 126:1189201.
  • 6
    Razin A, Riggs AD. DNA methylation and gene function. Science 1980; 210:60410.
  • 7
    Mostoslavsky R, Bergman Y. DNA methylation: regulation of gene expression and role in the immune system. Biochim Biophys Acta 1997; 1333:F2950.
  • 8
    Haluskova J. Epigenetic studies in human diseases. Folia Biol (Praha) 2010; 56:8396.
  • 9
    Rountree MR, Bachman KE, Herman JG, Baylin SB. DNA methylation, chromatin inheritance, and cancer. Oncogene 2001; 20:315665.
  • 10
    Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274:3300210.
  • 11
    Nakamura T, Sekigawa I, Ogasawara H et al. Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 2006; 298:2536.
  • 12
    Park BL, Kim LH, Shin HD, Park YW, Uhm WS, Bae SC. Association analyses of DNA methyltransferase-1 (DNMT1) polymorphisms with systemic lupus erythematosus. J Hum Genet 2004; 49:6426.
  • 13
    Xiang G, Zhenkun F, Shuang C et al. Association of DNMT1 gene polymorphisms in exons with sporadic infiltrating ductal breast carcinoma among Chinese Han women in the Heilongjiang Province. Clin Breast Cancer 2010; 10:3737.
  • 14
    Fan H, Liu D, Qiu X et al. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med 2010; 8:12.
  • 15
    Lee SJ, Jeon HS, Jang JS et al. DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis 2005; 26:4039.
  • 16
    Stern LL, Bagley PJ, Rosenberg IH, Selhub J. Conversion of 5-formyltetrahydrofolic acid to 5-methyltetrahydrofolic acid is unimpaired in folate-adequate persons homozygous for the C677T mutation in the methylenetetrahydrofolate reductase gene. J Nutr 2000; 130:223842.
  • 17
    Chen Z, Karaplis AC, Ackerman SL et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001; 10:43343.
  • 18
    Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10:11113.
  • 19
    Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988; 43:41421.
  • 20
    Lievers KJ, Boers GH, Verhoef P et al. A second common variant in the methylenetetrahydrofolate reductase (MTHFR) gene and its relationship to MTHFR enzyme activity, homocysteine, and cardiovascular disease risk. J Mol Med 2001; 79:5228.
  • 21
    Gaughan DJ, Kluijtmans LA, Barbaux S et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001; 157:4516.
  • 22
    Paz MF, Avila S, Fraga MF et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 2002; 62:451924.
  • 23
    Chen J, Stampfer MJ, Ma J et al. Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 2001; 154:66772.
  • 24
    Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 2000; 275:2931823.
  • 25
    Fatemi M, Hermann A, Pradhan S, Jeltsch A. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 2001; 309:118999.
  • 26
    Hayashi F, Watanabe M, Nanba T, Inoue N, Akamizu T, Iwatani Y. Association of the –31C/T functional polymorphism in the interleukin-1beta gene with the intractability of Graves’ disease and the proportion of T helper type 17 cells. Clin Exp Immunol 2009; 158:2816.
  • 27
    Yamada H, Watanabe M, Nanba T, Akamizu T, Iwatani Y. The +869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease. Clin Exp Immunol 2008; 151:37982.
  • 28
    Rodriguez-Cortez VC, Hernando H, de la Rica L, Vento R, Ballestar E. Epigenomic deregulation in the immune system. Epigenomics 2011; 3:697713.
  • 29
    Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 2009; 60:330313.
  • 30
    Park SJ, Kim KJ, Kim WU, Oh IH, Cho CS. Involvement of endoplasmic reticulum stress in homocysteine-induced apoptosis of osteoblastic cells. J Bone Miner Metab 2012; 30:47484.
  • 31
    Shastry S, Ingram AJ, Scholey JW, James LR. Homocysteine induces mesangial cell apoptosis via activation of p38-mitogen-activated protein kinase. Kidney Int 2007; 71:30411.
  • 32
    Zbidi H, Redondo PC, Lopez JJ, Bartegi A, Salido GM, Rosado JA. Homocysteine induces caspase activation by endoplasmic reticulum stress in platelets from type 2 diabetics and healthy donors. Thromb Haemost 2010; 103:102232.
  • 33
    Hirashima Y, Seshimo S, Fujiki Y et al. Homocysteine and copper induce cellular apoptosis via caspase activation and nuclear translocation of apoptosis-inducing factor in neuronal cell line SH-SY5Y. Neurosci Res 2010; 67:3006.
  • 34
    Kaczmarek E, Lacka K, Jarmolowska-Jurczyszyn D, Sidor A, Majewski P. Changes of B and T lymphocytes and selected apopotosis markers in Hashimoto's thyroiditis. J Clin Pathol 2011; 64:62630.