SEARCH

SEARCH BY CITATION

References

  • 1
    Plant, T.M. (2008) Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. Journal of Neuroendocrinology, 20, 719726.
  • 2
    Maestre de San Juan, A. (1856) Falta total de los nervios olfactorios con anosmia en un individuo en quien existia una atrofia congenita de los testiculos y miembro viril. Medico, 131, 211221.
  • 3
    Kallmann, F.J., Schoenfeld, W.A. & Barrera, S.E. (1944) The genetic aspects of primary eunuchoidism. American Journal of Mental Deficiency, XLVIII, 203236.
  • 4
    De Morsier, G. & Gauthier, G. (1963) La dysplasie olfactogenitale. Pathologie Biologie, 11, 12671272.
  • 5
    Amoss, M., Burgus, R., Blackwell, R. et al. (1971) Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin. Biochemical and Biophysical Research Communications, 44, 205210.
  • 6
    Schally, A.V., Arimura, A., Baba, Y. et al. (1971) Isolation and properties of the FSH and LH-releasing hormone. Biochemical and Biophysical Research Communications, 43, 393399.
  • 7
    Naftolin, F., Harris, G.W. & Bobrow, M. (1971) Effect of purified luteinizing hormone releasing factor on normal and hypogonadotrophic anosmic men. Nature, 232, 496497.
  • 8
    Bick, D., Franco, B., Sherins, R.J. et al. (1992) Brief report: intragenic deletion of the KALIG-1 gene in Kallmann’s syndrome. New England Journal of Medicine, 326, 17521755.
  • 9
    Franco, B., Guioli, S., Pragliola, A. et al. (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature, 353, 529536.
  • 10
    Legouis, R., Hardelin, J.P., Levilliers, J. et al. (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell, 67, 423435.
  • 11
    Schwanzel-Fukuda, M., Bick, D. & Pfaff, D.W. (1989) Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Research. Molecular Brain Research, 6, 311326.
  • 12
    Albuisson, J., Pecheux, C., Carel, J.C. et al. (2005) Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2). Human Mutation, 25, 9899.
  • 13
    Pedersen-White, J.R., Chorich, L.P., Bick, D.P. et al. (2008) The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Molecular Human Reproduction, 14, 367370.
  • 14
    Oliveira, L.M., Seminara, S.B., Beranova, M. et al. (2001) The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics. Journal of Clinical Endocrinology and Metabolism, 86, 15321538.
  • 15
    Hardelin, J.P. & Dode, C. (2008) The complex genetics of Kallmann syndrome: KAL1, FGFR1, FGF8, PROKR2, PROK2, et al. Sexual Development, 2, 181193.
  • 16
    Salenave, S., Chanson, P., Bry, H. et al. (2008) Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. Journal of Clinical Endocrinology and Metabolism, 93, 758763.
  • 17
    Sato, N., Katsumata, N., Kagami, M. et al. (2004) Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. Journal of Clinical Endocrinology and Metabolism, 89, 10791088.
  • 18
    Tsai, P.S. & Gill, J.C. (2006) Mechanisms of disease: insights into X-linked and autosomal-dominant Kallmann syndrome. Nature Clinical Practice. Endocrinology & Metabolism, 2, 160171.
  • 19
    Dode, C., Levilliers, J., Dupont, J.M. et al. (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nature Genetics, 33, 463465.
  • 20
    Pitteloud, N., Meysing, A., Quinton, R. et al. (2006) Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Molecular and Cellular Endocrinology, 254–255, 6069.
  • 21
    Trarbach, E.B., Costa, E.M., Versiani, B. et al. (2006) Novel fibroblast growth factor receptor 1 mutations in patients with congenital hypogonadotropic hypogonadism with and without anosmia. Journal of Clinical Endocrinology and Metabolism, 91, 40064012.
  • 22
    Pitteloud, N., Acierno, J.S. Jr, Meysing, A.U. et al. (2005) Reversible Kallmann syndrome, delayed puberty, and isolated anosmia occurring in a single family with a mutation in the fibroblast growth factor receptor 1 gene. Journal of Clinical Endocrinology and Metabolism, 90, 13171322.
  • 23
    Pitteloud, N., Acierno, J.S. Jr, Meysing, A.U. et al. (2006) Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 103, 62816286.
  • 24
    Xu, N., Qin, Y., Reindollar, R.H. et al. (2007) A mutation in the fibroblast growth factor receptor 1 gene causes fully penetrant normosmic isolated hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism, 92, 11551158.
  • 25
    Falardeau, J., Chung, W.C., Beenken, A. et al. (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. Journal of Clinical Investigation, 118, 28222831.
  • 26
    Cheng, M.Y., Bullock, C.M., Li, C. et al. (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature, 417, 405410.
  • 27
    LeCouter, J., Lin, R. & Ferrara, N. (2002) Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Medicine, 8, 913917.
  • 28
    Lecouter, J., Lin, R. & Ferrara, N. (2004) EG-VEGF: a novel mediator of endocrine-specific angiogenesis, endothelial phenotype, and function. Annals of the New York Academy of Sciences, 1014, 5057.
  • 29
    Schweitz, H., Pacaud, P., Diochot, S. et al. (1999) MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction. FEBS Letters, 461, 183188.
  • 30
    Ng, K.L., Li, J.D., Cheng, M.Y. et al. (2005) Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science, 308, 19231927.
  • 31
    Pitteloud, N., Zhang, C., Pignatelli, D. et al. (2007) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 104, 1744717452.
  • 32
    Matsumoto, S., Yamazaki, C., Masumoto, K.H. et al. (2006) Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proceedings of the National Academy of Sciences of the United States of America, 103, 41404145.
  • 33
    Dode, C., Teixeira, L., Levilliers, J. et al. (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genetics, 2, 16491652.
  • 34
    Abreu, A.P., Trarbach, E.B., De Castro, M. et al. (2008) Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. Journal of Clinical Endocrinology and Metabolism, 93, 41134118.
  • 35
    Cole, L.W., Sidis, Y., Zhang, C. et al. (2008) Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. Journal of Clinical Endocrinology and Metabolism, 93, 35513559.
  • 36
    Vissers, L.E., Van Ravenswaaij, C.M., Admiraal, R. et al. (2004) Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genetics, 36, 955957.
  • 37
    Kim, H.G., Kurth, I., Lan, F. et al. (2008) Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. American Journal of Human Genetics, 83, 511519.
  • 38
    Jongmans, M.C., Van Ravenswaaij-Arts, C.M., Pitteloud, N. et al. (2009) CHD7 mutations in patients initially diagnosed with Kallmann syndrome – the clinical overlap with CHARGE syndrome. Clinical Genetics, 75, 6571.
  • 39
    Miura, K., Acierno, J.S. Jr & Seminara, S.B. (2004) Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism (IHH). Journal of Human Genetics, 49, 265268.
  • 40
    Pitteloud, N., Quinton, R., Pearce, S. et al. (2007) Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. Journal of Clinical Investigation, 117, 457463.
  • 41
    Quinton, R., Duke, V.M., De Zoysa, P.A. et al. (1996) The neuroradiology of Kallmann’s syndrome: a genotypic and phenotypic analysis. Journal of Clinical Endocrinology and Metabolism, 81, 30103017.
  • 42
    Seminara, S.B., Hayes, F.J. & Crowley, W.F. Jr (1998) Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann’s syndrome): pathophysiological and genetic considerations. Endocrine Reviews, 19, 521539.
  • 43
    Nachtigall, L.B., Boepple, P.A., Pralong, F.P. et al. (1997) Adult-onset idiopathic hypogonadotropic hypogonadism – a treatable form of male infertility. New England Journal of Medicine, 336, 410415.
  • 44
    Badano, J.L. & Katsanis, N. (2002) Beyond Mendel: an evolving view of human genetic disease transmission. Nature Reviews. Genetics, 3, 779789.
  • 45
    Conte, F.A., Grumbach, M.M., Kaplan, S.L. et al. (1980) Correlation of luteinizing hormone-releasing factor-induced luteinizing hormone and follicle-stimulating hormone release from infancy to 19 years with the changing pattern of gonadotropin secretion in agonadal patients: relation to the restraint of puberty. Journal of Clinical Endocrinology and Metabolism, 50, 163168.
  • 46
    Atkinson, L.E., Bhattacharya, A.N., Monroe, S.E. et al. (1970) Effects of gonadectomy on plasma LH concentration in the rhesus monkey. Endocrinology, 87, 847849.
  • 47
    Plant, T.M. (2001) Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. Frontiers in Neuroendocrinology, 22, 107139.
  • 48
    Plant, T.M., Gay, V.L., Marshall, G.R. et al. (1989) Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 86, 25062510.
  • 49
    Crowley, W.F. Jr, Pitteloud, N. & Seminara, S. (2008) New genes controlling human reproduction and how you find them. Transactions of the American Clinical and Climatological Association, 119, 2937.
  • 50
    De Roux, N., Young, J., Misrahi, M. et al. (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. New England Journal of Medicine, 337, 15971602.
  • 51
    Layman, L.C., Cohen, D.P., Jin, M. et al. (1998) Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nature Genetics, 18, 1415.
  • 52
    Bouligand, J., Ghervan, C., Tello, J.A. et al. (2009) Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. New England Journal of Medicine, 360, 27422748.
  • 53
    Chan, Y.M., De Guillebon, A. & Lang-Muritano, M., et al. (2009) GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 106, 1170311708.
  • 54
    Beranova, M., Oliveira, L.M., Bedecarrats, G.Y. et al. (2001) Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism, 86, 15801588.
  • 55
    De Roux, N. (2006) GnRH receptor and GPR54 inactivation in isolated gonadotropic deficiency. Best Practice & Research. Clinical Endocrinology & Metabolism, 20, 515528.
  • 56
    Lin, L., Conway, G.S., Hill, N.R. et al. (2006) A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting as constitutional delay of growth and puberty with subsequent borderline oligospermia. Journal of Clinical Endocrinology and Metabolism, 91, 51175121.
  • 57
    Seminara, S.B., Beranova, M., Oliveira, L.M. et al. (2000) Successful use of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction and pregnancy in a patient with GnRH receptor mutations. Journal of Clinical Endocrinology and Metabolism, 85, 556562.
  • 58
    De Roux, N., Genin, E., Carel, J.C. et al. (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences of the United States of America, 100, 1097210976.
  • 59
    Seminara, S.B., Messager, S., Chatzidaki, E.E. et al. (2003) The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349, 16141627.
  • 60
    Ohtaki, T., Shintani, Y., Honda, S. et al. (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411, 613617.
  • 61
    Gottsch, M.L., Cunningham, M.J., Smith, J.T. et al. (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology, 145, 40734077.
  • 62
    Matsui, H., Takatsu, Y., Kumano, S. et al. (2004) Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochemical and Biophysical Research Communications, 320, 383388.
  • 63
    Messager, S., Chatzidaki, E.E., Ma, D. et al. (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proceedings of the National Academy of Sciences of the United States of America, 102, 17611766.
  • 64
    Shahab, M., Mastronardi, C., Seminara, S.B. et al. (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proceedings of the National Academy of Sciences of the United States of America, 102, 21292134.
  • 65
    Dhillo, W.S., Chaudhri, O.B., Patterson, M. et al. (2005) Kisspeptin-54 stimulates the hypothalamic–pituitary–gonadal axis in human males. Journal of Clinical Endocrinology and Metabolism, 90, 66096615.
  • 66
    Chan, Y.M., Broder-Fingert, S. & Seminara, S.B. (2009) Reproductive functions of kisspeptin and Gpr54 across the life cycle of mice and men. Peptides, 30, 4248.
  • 67
    Clarkson, J. & Herbison, A.E. (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology, 147, 58175825.
  • 68
    Castellano, J.M., Roa, J., Luque, R.M. et al. (2009) KiSS-1/kisspeptins and the metabolic control of reproduction: physiologic roles and putative physiopathological implications. Peptides, 30, 139145.
  • 69
    Clarkson, J. & Herbison, A.E. (2009) Oestrogen, kisspeptin, GPR54 and the pre-ovulatory luteinising hormone surge. Journal of Neuroendocrinology, 21, 305311.
  • 70
    Rance, N.E. (2008) Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides, 30, 111122.
  • 71
    Lanfranco, F., Gromoll, J., Von Eckardstein, S. et al. (2005) Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic hypogonadism. European Journal of Endocrinology, 153, 845852.
  • 72
    Semple, R.K., Achermann, J.C., Ellery, J. et al. (2005) Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism, 90, 18491855.
  • 73
    Tenenbaum-Rakover, Y., Commenges-Ducos, M., Iovane, A. et al. (2007) Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. Journal of Clinical Endocrinology and Metabolism, 92, 11371144.
  • 74
    Cerrato, F., Shagoury, J., Kralickova, M. et al. (2006) Coding sequence analysis of GNRHR and GPR54 in patients with congenital and adult-onset forms of hypogonadotropic hypogonadism. European Journal of Endocrinology, 155(Suppl. 1): S3S10.
  • 75
    Pallais, J.C., Bo-Abbas, Y., Pitteloud, N. et al. (2006) Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor, GPR54. Molecular and Cellular Endocrinology, 254–255, 7077.
  • 76
    Popa, S.M., Clifton, D.K. & Steiner, R.A. (2008) The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annual Review of Physiology, 70, 213238.
  • 77
    Teles, M.G., Bianco, S.D., Brito, V.N. et al. (2008) A GPR54-activating mutation in a patient with central precocious puberty. New England Journal of Medicine, 358, 709715.
  • 78
    Fraser, M.O. & Plant, T.M. (1989) Further studies on the role of the gonads in determining the ontogeny of gonadotropin secretion in the guinea pig (Cavia porcelus). Endocrinology, 125, 906911.
  • 79
    Goldman, B.D., Grazia, Y.R., Kamberi, I.A. et al. (1971) Serum gonadotropin concentrations in intact and castrated neonatal rats. Endocrinology, 88, 771776.
  • 80
    Gupta, D., Rager, K., Zarzycki, J. et al. (1975) Levels of luteinizing hormone, follicle-stimulating hormone, testosterone and dihydrotestosterone in the circulation of sexually maturing intact male rats and after orchidectomy and experimental bilateral cryptorchidism. Journal of Endocrinology, 66, 183193.
  • 81
    Topaloglu, A.K., Reimann, F., Guclu, M. et al. (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nature Genetics, 41, 354358.
  • 82
    Guran, T., Tolhurst, G. & Bereket, A., et al. (2009) A novel missense mutation in the first extracellular loop of the neurokinin B receptor causes hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism, 94, 36333639.
  • 83
    Pinto, F.M., Almeida, T.A., Hernandez, M. et al. (2004) mRNA expression of tachykinins and tachykinin receptors in different human tissues. European Journal of Pharmacology, 494, 233239.
  • 84
    Maggi, C.A. & Schwartz, T.W. (1997) The dual nature of the tachykinin NK1 receptor. Trends in Pharmacological Sciences, 18, 351355.
  • 85
    Sandoval-Guzman, T. & Rance, N.E. (2004) Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of Fos expression in the rat hypothalamus. Brain Research, 1026, 307312.
  • 86
    Kung, T.T., Crawley, Y., Jones, H. et al. (2004) Tachykinin NK3-receptor deficiency does not inhibit pulmonary eosinophilia in allergic mice. Pharmacological Research, 50, 611615.
  • 87
    Chawla, M.K., Gutierrez, G.M., Young, W.S. 3rd et al. (1997) Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. Journal of Comparative Neurology, 384, 429442.
  • 88
    Canto, P., Munguia, P., Soderlund, D. et al. (2009) Genetic analysis in patients with Kallmann syndrome: coexistence of mutations in prokineticin receptor 2 and KAL1. Journal of Andrology, 30, 4145.