• Breeding habitat;
  • genetically modified crops;
  • habitat sterilisation;
  • individual movement;
  • models;
  • milkweed patches;
  • roundup ready;
  • searching behaviour

1. We use an individual-based model describing the life of a monarch butterfly, which utilises milkweeds both aggregated in patches and scattered across the wider landscape as a substrate for laying eggs. The model simplifies the metapopulation of milkweed habitat patches by representing them as a proportion of the overall landscape, with the rest of the landscape considered matrix, which may contain some low density of milkweed plants.

2. The model simulates the number of eggs laid daily by a butterfly as it searches for hosts. The likelihood of finding hosts is related to the density of plants and the search ability of the butterfly. For an empty matrix, remaining in a habitat patch results in more eggs laid. However individuals that are good searchers have almost equivalent success without remaining in a habitat patch. These individuals are most affected by the presence of hosts in the matrix.

3. Given realistic values of habitat patch availability, our model shows that the presence of plants at a low density in the matrix has a substantial impact on the number of eggs laid; removing these plants can reduce lifetime potential fecundity by ca. 20%. These results have implications for monarch butterflies inhabiting agricultural landscapes, in which genetically modified soybean that is resistant to herbicides has resulted in the decimation of milkweeds over large areas.