• 1
    Kannel WB, Castelli WP, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham Study. Ann Intern Med 1971;74: 112.
  • 2
    Barr DP, Russ EM, Eder HA. Protein-lipid relationship in human plasma in atherosclerosis and related conditions. Am J Med 1951;11: 48093.
  • 3
    Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1975;1: 169.
  • 4
    Assmann G, Schulte H, Von Eckardstein A, Huang Y. High density lipoprotein cholesterol as a predictor of coronary heart disease. The PROCAM experience and pathophysiological implication for reverse cholesterol transport. Atherosclerosis 1996;124: S11S20.
  • 5
    Criqui MH, Heiss G, Cohn G, Cowan LD, Suchindran CM, Bangdiwala S et al. Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 1993;328: 12205.
  • 6
    DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991;14: 17394.
  • 7
    Reaven GM. Banting Lecture. role of insulin resistance in human disease. Diabetes 1988;37: 1595607.
  • 8
    Haffner SM, Miettinen H. Insulin resistance implications for type II diabetes mellitus and coronary heart disease. Am J Med 1997;103: 15262.
  • 9
    Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L et al. Insulin resistance in essential hypertension. N Engl J Med 1987;317: 3507.
  • 10
    Juhan-Vague I, Alessi MC, Vague P. Increased plasma plasminogen activator inhibitor-1 levels. a possible link between insulin resistance and atherothrombosis. Diabetologia 1991;34: 45762.
  • 11
    Riemens SC, Van Tol A, Stulp BK, Dullaart RPF. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin: cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men. J Lipid Res 1999;40: 146774.
  • 12
    Lehto S, Rönnemaa T, Haffner SM, Pyörälä K, Kallia V, Laakso M. Dyslipidemia and hyperglycemia predict coronary heart disease events in middle-age patients with NIDDM. Diabetes 1997;46: 13549.
  • 13
    Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995;36: 21128.
  • 14
    Rothblat GH, Llera-Moya M de la, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 1999;40: 78196.
  • 15
    Watts GF, Playford DA. Dyslipoproteinaemia and hyperoxidative stress in the pathogenesis of endothelial dysfunction in non-insulin dependent diabetes mellitus: an hypothesis. Atherosclerosis 1998;141: 1730.
  • 16
    Bonnefont-Rousselot D, Thérond P, Beaudeux JL, Peynet J, LeGrand A, Delattre J. High density lippoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin Chem Lab Med 1999;37: 93948.
  • 17
    Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991;88: 203946.
  • 18
    Eisenberg S. High density lipoprotein metabolism. J Lipid Res 1984;25: 101758.
  • 19
    Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001;21: 1327.
  • 20
    Tailleux A, Duriez P, Fruchart JC, Clavey V. Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis 2002;164: 113.
  • 21
    Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, Von Eckardstein A et al. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002;161: 116.
  • 22
    Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase. the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002;13: 47181.
  • 23
    Panarotto D, Rémillard P, Bouffard L, Maheux P. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur J Clin Invest 2002;32: 8492.
  • 24
    Jin W, Marchadier D, Rader DJ. Lipases and HDL metabolism. Trends Endocrinol Metab 2002;13: 1748.
  • 25
    Kuivenhoven JA, Groenemeyer BE, Boer JMA, Reymer PWA, Berghuis R, Bruin T et al. Ser447stop mutation in lipoprotein lipase is associated with elevated HDL cholesterol levels in normolipidemic males. Arterioscler Thromb Vasc Biol 1997;17: 5959.
  • 26
    Perret B, Mabile L, Martinez L, Tercé F, Barbaras R, Collet X. Hepatic lipase: structure/function relationship, synthesis and regulation. J Lipid Res 2002;43: 11639.
  • 27
    Rye KA, Clay MA, Barter PJ. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 1999;145: 22738.
  • 28
    Blanco-Vaca F, Escolà-Gil JC, Martín-Campos JM, Julve J. Role of apo A-II in lipid metabolism and atherosclerosis: advances in the study of an enigmatic protein. J Lipid Res 2001;42: 172739.
  • 29
    Hirata K, Dichek HL, Cioffi JA, Choi SY, Leeper NJ, Quintana L et al. Cloning of a unique lipase from endothelial cells extends the lipase gene family. J Biol Chem 1999;274: 141705.
  • 30
    Ishida T, Choi S, Kundu RK, Hirata K, Rubin EM, Cooper AD et al. Endothelial lipase is a major determinant of HDL level. J Clin Invest 2003;111: 34755.
  • 31
    Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nature Med 1999;21: 4248.
  • 32
    Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin: cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 1997;38: 191205.
  • 33
    Mowri HO, Patsch JR, Ritsch A, Föger B, Brown S, Patsch W. High density lipoproteins with differing apolipoproteins. relationships to postprandial lipemia, cholesteryl ester lipase, hepatic lipase, and lecithin: cholesterol acyltransferase. J Lipid Res 1994;35: 291300.
  • 34
    Murakami T, Michelagnoli S, Longhi R, Gianfrancheschi G, Pazzucconi F, Calabresi L et al. Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler Thromb Vasc Biol 1995;15: 181928.
  • 35
    Dullaart RPF, Riemens SC, Scheek LM, Van Tol A. Insulin decreases plasma cholesteryl ester transport but not cholesterol esterification in healthy subjects as well as in normotriglyceridemic patients type 2 diabetes. Eur J Clin Invest 1999;29: 66371.
  • 36
    Pastier D, Dugué S, Boisfer E, Atger V, Quang Tran N, Van Tol A et al. Apolipoprotein A-II/A-I is a key determinant in vivo of HDL concentration and formation of pre -β HDL containing apolipoprotein A-II. Biochemistry 2001;40: 1224353.
  • 37
    Riemens S, Van Tol A, Sluiter W, Dullaart R. Elevated plasma cholesteryl ester transfer in NIDDM. Relationships with apolipoprotein B-containing lipoproteins and phospholipid transfer protein. Atherosclerosis 1998;140: 719.
  • 38
    Barter PJ, Rye KA. Cholesteryl ester transfer protein, high density lipoprotein and arterial disease. Curr Opin Lipidol 2001;12: 37782.
  • 39
    Dullaart RPF, Groener JEM, Erkelens DW. Cholesteryl ester transfer between lipoproteins. Diab Nutr Metab 1991;14: 32943.
  • 40
    Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res 1993;34: 125574.
  • 41
    Karpe F. Postprandial lipoprotein metabolism and atherosclerosis. J Intern Med 1999;246: 34155.
  • 42
    Lagrost L, Gambert P, Lallemant C. Combined effect of lipid transfers and lipases on gradient gel patterns of human plasma LDL. Arterioscler Thromb 1994;14: 132736.
  • 43
    Mann CJ, Yen FT, Grant AM, Bihain BE. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest 1991;88: 205966.
  • 44
    Eisenberg S, Gavish D, Oschry Y, Fainaru M, Deckelbaum R. Abnormalities in very low, low and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. J Clin Invest 1984;74: 47082.
  • 45
    Eisenberg S. Preferential enrichment of large-sized very low density lipoprotein with transferred cholesteryl esters. J Lipid Res 1985;26: 48794.
  • 46
    Tall AR, Sammett D, Vita GM, Deckelbaum R, Olivecrona T. Lipoprotein lipase enhances the cholesteryl ester transfer protein-mediated transfer of cholesteryl esters from high density lipoproteins to very low density lipoproteins. J Biol Chem 1984;259: 958794.
  • 47
    Ahnadi CE, Masmoudi T, Berthezène F, Ponsin G. Decreased ability of high density lipoproteins to transfer cholesterol esters in non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1993;23: 45965.
  • 48
    Hannuksela ML, Marcel YL, Kesaniemi YA, Savolainen MJ. Reduction in the concentration and activity of plasma cholesteryl ester transfer protein by alcohol. J Lipid Res 1992;33: 73744.
  • 49
    Venrooij FV, Stolk RP, Banga JD, Sijmonsma TP, Van Tol A, Erkelens DW et al. Common cholesteryl ester transfer protein gene polymorphisms and the effect of atorvastatin therapy in type 2 diabetes. Diab Care 2003;26: 121623.
  • 50
    Vries R, Van Gent T, Borggreve SE, Ito M, Sluiter WJ, Dallinga-Thie GM et al. Diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Eur J Clin Invest 2003;33: 401 (Abstract).
  • 51
    Wang X, Driscoll DM, Morton RE. Molecular cloning and expression of lipid transfer inhibitor protein reveals its identity with apolipoprotein F. J Biol Chem 1999;274: 181420.
  • 52
    Morton RE. Cholesteryl ester transfer protein and its plasma regulator: lipid transfer inhibitor protein. Curr Opin Lipidol 1999;10: 3217.
  • 53
    Gautier T, Pais de Barros JP, Athias A, Gambert P, Aunis D, Metz-Boutigue MH et al. Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J Biol Chem 2000;275: 375049.
  • 54
    Hirano K, Yamashita S, Nakajima N, Arai T, Maruyama T, Yoshida Y et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol 1997;17: 10539.
  • 55
    Zhang Z, Yamashita S, Hirano K, Nakagawa-Toyama A, Nishida M, Sakai N et al. Expression of cholesteryl ester transfer protein in human atherosclerotic lesions and its implication in reverse cholesterol transport. Atherosclerosis 2001;159: 6775.
  • 56
    Zhong S, Sharp DS, Grove JS, Bruce C, Yano K, Curb JD et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996;97: 291723.
  • 57
    Cuchel M, Wolfe ML, DeLemos AS, Rader DJ. The frequency of the cholesteryl ester transfer protein-TaqI B2 allele is lower in African Americans than in Caucasians. Atherosclerosis 2002;163: 16974.
  • 58
    Boekholdt SM, Thompson JF. Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 2003;44: 108093.
  • 59
    Talmud PJ, Edwards KL, Turner CM, Newman B, Palmen JM, Humphries SE et al. Linkage of the cholesteryl ester transfer protein (CETP) gene tot LDL particle size. Use of a novel tetranucleotide repeat within the CETP promoter. Circulation 2000;101: 24616.
  • 60
    Dachet C, Poirier O, Cambien F, Chapman MJ, Rouis M. New functional promoter polymorphism, CETP/-629, in cholesteryl ester transfer protein (CETP) gene related to CETP mass and high density lipoprotein cholesterol levels. role of Sp1/Sp3 in transcriptional regulation. Arterioscler Thromb Vasc Biol 2000;20: 50715.
  • 61
    Goto A, Sasai K, Suzuki S, Fukutomi T, Ito S, Matsushita T et al. Cholesterol ester transfer protein and atherosclerosis in Japanese subjects: a study based on coronary angiography. Atherosclerosis 2001;159: 15363.
  • 62
    Ordovas JM, Cupples A, Corella D, Otvos JD, Osgood D, Martinez A et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk. The Framingham Study. Arterioscler Thromb Vasc Biol 2000;20: 13239.
  • 63
    Dullaart RPF, Hoogenberg K, Riemens SC, Groener JE, Van Tol A, Sluiter WJ et al. Cholesteryl ester transfer protein gene polymorphism is a determinant of HDL cholesterol and of the lipoprotein response to a lipid-lowering diet in type 1 diabetes. Diabetes 1997;46: 20827.
  • 64
    Hannuksela ML, Liinamaa MJ, Kesaniemi YA, Savolainen MJ. Relation of polymorphisms in the cholesteryl ester transfer protein gene to transfer protein activity and plasma lipoprotein levels in alcohol drinkers. Atherosclerosis 1994;110: 3544.
  • 65
    Kauma H, Savolainen MJ, Heikkila R, Rantala AO, Lilja M, Reunanen A et al. Sex difference in the regulation of plasma high density lipoprotein cholesterol by genetic and environmental factors. Hum Genet 1996;97: 15662.
  • 66
    Fumeron F, Betoulle D, Luc G, Behague I, Ricard S, Poirier O et al. Alcohol intake modulates the effect of a polymorphism of the cholesteryl ester transfer protein gene on plasma high density lipoprotein and the risk of myocardial infarction. J Clin Invest 1995;96: 166471.
  • 67
    Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A. Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation 2000;101: 190712.
  • 68
    Agerholm-Larsen B, Tybjaerg-Hansen A, Schnohr P, Steffensen R, Nordestgaard BG. Common cholesteryl ester transfer protein mutations, decreased HDL cholesterol, and possible decreased risk of ischemic heart disease. The Copenhagen City Heart Study. Circulation 2000;102: 2197203.
  • 69
    Day JR, Albers JJ, Lofton-Day CE, Gilbert TL, Ching AFT, Grant FJ et al. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J Biol Chem 1994;269: 938891.
  • 70
    Nishida HI, Nishida T. Phospholipid transfer protein mediates transfer of not only phosphatidylcholine but also cholesterol vesicles to high density lipoproteins. J Biol Chem 1997;272: 695964.
  • 71
    Jauhiainen M, Metso J, Pahlman R, Blomqvist S, Van Tol A, Ehnholm C. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem 1993;268: 40326.
  • 72
    Tu AY, Nishida HI, Nishida T. High density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J Biol Chem 1993;268: 23098105.
  • 73
    Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-β-migrating high-density lipoprotein. Biochemistry 1988;27: 259.
  • 74
    Eckardstein A, Jauhiainen M, Huang Y, Metso J, Langer C, Pussinen P et al. Phospholipid transfer protein mediated conversion of high density lipoproteins generates pre β1-HDL. Biochim Biophys Acta 1996;1301: 25562.
  • 75
    Huuskonen J, Ekström M, Tahvanainen E, Vainio A, Metso J, Pussinen P et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis 2000;151: 45161.
  • 76
    Kärkkäinen M, Oka T, Olkkonen VM, Metso J, Hattori H, Jauhiainen M et al. Isolation and partial characterization of the inactive and active forms of human plasma phospholipid transfer protein (PLTP). J Biol Chem 2002;277: 154138.
  • 77
    Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003;46: 73349.
  • 78
    Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996;97: 285965.
  • 79
    Howard BV, Howard WJ. Dyslipidemia in non-insulin-dependent diabetes mellitus. Endocrine Rev 1994;15: 26374.
  • 80
    Taskinen MR. Hyperlipidaemia in diabetes. Ballière's Clin Endocrinol Metabolism 1990;4: 74375.
  • 81
    Syvänne M, Hilden H, Taskinen MR. Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease. J Lipid Res 1994;35: 1526.
  • 82
    Riemens SC, Van Tol A, Scheek LM, Dullaart RPF. Plasma cholesteryl ester transfer and hepatic lipase activity are related to high-density lipoprotein cholesterol in association with insulin resistance in type 2 diabetic and non-diabetic subjects. Scand J Clin Lab Invest 2001;61: 110.
  • 83
    Laakso M, Voutilainen E, Sarlund H, Aro A, Pyörälä K, Perret B. Serum Lipids and lipoproteins in middle-aged non-insulin-dependent diabetics. Atherosclerosis 1985;56: 27181.
  • 84
    Riemens SC, Van Tol A, Sluiter WJ, Dullaart RPF. Plasma phospholipid transfer protein activity is related to insulin resistance: impaired acute lowering by insulin in obese NIDDM patients. Diabetologia 1998;41: 92934.
  • 85
    Berthezène F. Non-insulin dependent diabetes and reverse cholesterol transport. Atherosclerosis 1996;124 (Suppl.):S39S42.
  • 86
    Brites FD, Cavallero E, Geitere C de, Nicolaïew N, Jacotot B, Rosseneu M et al. Abnormal capacity to induce cholesterol efflux and a new LpA-I pre-β particle in type 2 diabetic patients. Clin Chim Acta 1999;279: 114.
  • 87
    O'Brien T, Nguyen TT, Hallaway BJ, Hodge D, Bailey K, Kottke BA. HDL subparticles and coronary artery disease in NIDDM. Atherosclerosis 1996;121: 28591.
  • 88
    Ishida BY, Frolich J, Fielding CJ. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer. J Lipid Res 1987;28: 77886.
  • 89
    Dullaart RPF, Van Tol A. Role of phospholipid transfer protein and prebeta-high density lipoproteins in maintaining cholesterol efflux from Fu5AH cells to plasma from insulin-resistant subjects. Scand J Clin Lab Invest 2001;61: 6974.
  • 90
    Dullaart RPF, Van Tol A. Twenty four hour insulin infusion impairs the ability of plasma from healthy subjects and type 2 diabetic patients to promote cellular cholesterol efflux. Atherosclerosis 2001;157: 4956.
  • 91
    Knudsen P, Eriksson J, Lahdenperä S, Kahri J, Groop L, Taskinen MR et al. Changes of lipolytic enzymes cluster with insulin resistance syndrome. Diabetologia 1995;38: 34450.
  • 92
    Pykalisto OJ, Smith PH, Brunzell JD. Determinants of human adipose tissue lipoprotein lipase. Effect of diabetes and obesity on basal- and diet-induced activity. J Clin Invest 1975;56: 110870.
  • 93
    Pollare T, Vessby B, Lithell H. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arterioscler Thromb 1991;11: 1192203.
  • 94
    Riemens SC, Van Tol A, Sluiter WJ, Dullaart RPF. Acute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin: cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities. J Lipid Res 1999;40: 145966.
  • 95
    Baynes C, Henderson AD, Anyaoku V, Richmond W, Hughes CL, Johnston DG et al. The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of type 2 diabetes. Diabet Med 1991;8: 5606.
  • 96
    Stokke KT, Enger SC. Plasma HDL cholesterol and the in vitro esterification of cholesterol. Scand J Clin Lab Invest 1979;39: 597600.
  • 97
    Channon KM, Clegg RJ, Bhatnagar D, Ishola M, Arrol S, Durrington PN. Investigation of lipid transfer in human serum leading to the development of an isotopic method for the determination of endogenous cholesterol esterification and transfer. Atherosclerosis 1990;80: 21726.
  • 98
    Floren CH, Chen CH, Franzen J, Albers JJ. Lecithin: cholesterol acyltransferase in liver disease. Scand J Clin Lab Invest 1987;47: 6137.
  • 99
    Albers JJ, Adolphson JL, Chen CH. Radioimmunoassay of human plasma lecithin-cholesterol acyltransferase. J Clin Invest 1981;67: 1418.
  • 100
    Bhatnagar D, Durrington PN, Kumar S, Mackness MI, Boulton AJM. Plasma lipoprotein composition and cholesteryl ester transfer from high density to very low density lipoproteins in patients with non-insulin dependent diabetes mellitus. Diabet Med 1996;13: 13944.
  • 101
    Durlach V, Attia N, Zahouani A, Leutenegger M, Girard-Globa A. Postprandial cholesteryl ester transfer and high density lipoprotein composition in normotriglyceridemic non-insulin-dependent diabetic patients. Atherosclerosis 1996;120: 15565.
  • 102
    Jones RJ, Owens D, Brennan C, Collins PB, Johnson AH, Tomkin GH. Increased esterification of cholesterol and transfer of cholesteryl ester to apo B-containing lipoproteins in Type 2 diabetes. relationship to serum lipoproteins A-I and A-II. Atherosclerosis 1996;119: 1517.
  • 103
    Groener JE, Pelton RW, Kostner GM. Improved estimation of cholesteryl ester transfer/exchange activity in serum or plasma. Clin Chem 1986;32: 2836.
  • 104
    Lottenberg SA, Lottenberg AMP, Nunes VS, McPherson R, Quintao ECR. Plasma cholesteryl ester transfer protein concentration, high-density lipoprotein cholesterol esterification and transfer rates to lighter density lipoproteins in the fasting state and after a test meal are similar in type II diabetics and normal controls. Atherosclerosis 1996;127: 8190.
  • 105
    Guérin M, Le Goff W, Lassel TS, Van Tol A, Steiner G, Chapman MJ. Proatherogenic role of elevated CE transfer from HDL to VLDL1 and dense LDL in type 2 diabetes. Impact of the degree of triglyceridemia. Arterioscler Thromb Vasc Biol 2001;21: 2828.
  • 106
    Bagdade JD, Lane JT, Subbaiah PV, Otto ME, Ritter MC. Accelerated cholesteryl ester transfer in noninsulin-dependent diabetes mellitus. Atherosclerosis 1993;104: 6977.
  • 107
    Arii K, Suehiro T, Yamamoto M, Ito H, Hashimoto K. Suppression of plasma cholesteryl ester transfer protein activity in acute hyperinsulinemia and effect of plasma nonesterified fatty acid. Metabolism 1997;46: 116670.
  • 108
    Riemens SC, Van Tol A, Sluiter WJ, Dullaart RPF. Plasma phospholipid transfer protein activity is lowered by 24 hour insulin and Acipimox administration: blunted response to insulin in type 2 diabetic patients. Diabetes 1999;48: 16317.
  • 109
    Lahdenperä S, Syvänne M, Taskinen MR. Regulation of low-density lipoprotein particle distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 1996;39: 45361.
  • 110
    Damen J, Regts J, Scherphof G. Transfer of [14C]phosphatidylcholine between liposomes and human plasma high density lipoprotein. Partial purification of a transfer-stimulating plasma factor using a rapid transfer assay. Biochim Biophys Acta 1982;712: 44452.
  • 111
    Dullaart RPF, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A. Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur J Clin Invest 1994;24: 18894.
  • 112
    Speijer H, Groener JE, Van Ramshorst E, Van Tol A. Different locations of cholesteryl ester transfer protein and phospholipid transfer protein activities in plasma. Atherosclerosis 1991;90: 15968.
  • 113
    Desrumaux C, Athias A, Bessède G, Vergès B, Farnier M, Persegol L et al. Mass concentration of plasma phospholipid transfer protein in normolipidemic, type IIa hyperlipidemic, type IIb hyperlipidemic, and non-insulin-dependent diabetic subjects as measured by a specific ELISA. Arterioscler Thromb Vasc Biol 1999;19: 26675.
  • 114
    Cheung MC, Knopp B, Retzlaff B, Kennedy H, Wolfbauer G, Albers JJ. Association of plasma phospholipid transfer protein activity with IDL and buoyant LDL. impact of gender and adiposity. Biochim Biophys Acta 2002;1587: 539.
  • 115
    Dullaart RPF, Van Tol A. Short-term Acipimox decreases the ability of plasma from Type 2 diabetic patients and healthy subjects to stimulate cellular cholesterol efflux: a potentially adverse effect on reverse cholesterol transport. Diabet Med 2001;18: 50913.
  • 116
    Kaser S, Sandhofer A, Föger B, Ebenblicher CF, Igelseder B, Malaimare L et al. Influence of obesity and insulin sensitivity on phospholipid transfer protein activity. Diabetologia 2001;44: 11117.
  • 117
    Murdoch SJ, Carr MC, Hokanson JE, Brunzell JD, Albers JJ. PLTP activity in premenopausal women: relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance. J Lipid Res 2000;41: 23744.
  • 118
    Rye KA, Jensen G, Barter PJ, Ehnholm C. Triglyceride-enrichment of high density lipoproteins enhances their remodelling by phospholipid transfer protein. J Lipid Res 1998;39: 61322.
  • 119
    Sviridov D, Nestel P. Dynamics of reverse cholesterol transport: protection against atherosclerosis. Atherosclerosis 2002;161: 24554.
  • 120
    Glomset JA. The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 1968;9: 15567.
  • 121
    Miller NE, Ville A, La Crook D. Direct evidence that reverse cholesterol transport is mediated by high-density lipoprotein in rabbit. Nature 1985;314: 10911.
  • 122
    Stender S, Hjelms E. In vivo influx of free and esterified cholesterol into human aortic tissue without atherosclerotic lesions. J Clin Invest 1984;74: 187181.
  • 123
    Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990;85: 123441.
  • 124
    Sviridov D, Miyazaki O, Theodore K, Hoang A, Fukamachi I, Nestel P. Delineation of the role of pre-β1-HDL in cholesterol efflux using isolated pre-β1-HDL. Arterioscler Thromb Vasc Biol 2002;22: 14828.
  • 125
    Miyazaki A, Nakayama H, Horiuchi S. Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med 2002;12: 25862.
  • 126
    Schmitz G, Langmann T. Structure, function and regulation of the ABC1 gene product. Curr Opin Lipidol 2001;12: 12940.
  • 127
    Fournier N, Cogny A, Atger V, Pastier D, Goudouneche D, Nicoletti A et al. Opposite effects of plasma from human apolipoprotein A-II transgenic mice on cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells. Arterioscler Thromb Vasc Biol 2002;22: 63843.
  • 128
    Temel RE, Walzem RL, Banka CL, Williams DL. Apolipoprotein A-I is necessary for the in vivo formation of high density lipoprotein competent for scavenger receptor BI-mediated cholesteryl ester-selective uptake. J Biol Chem 2002;277: 2656572.
  • 129
    Barter PJ, Hopkins GJ, Rajaram OV. Enzymes involved in plasma cholesterol transport. Baillières Clin Endocrinol Metabolism 1987;1: 62338.
  • 130
    Fielding CJ, Fielding PE. Evidence for a lipoprotein carrier in human plasma catalyzing sterol efflux from cultured fibroblasts and its relationship to lecithin: cholesterol acyltransferase. Proc Natl Acad Sci U S A 1981;78: 39114.
  • 131
    Barter PJ, Rye KA. Molecular mechanisms of reverse cholesterol transport. Curr Opin Lipidol 1996;7: 827.
  • 132
    Llera Moya M, Atger V, Paul JL, Fournier N, Moatti N, Giral P et al. A cell culture system for screening human serum for ability to promote cellular cholesterol efflux. Relations between serum components and efflux, esterification, and transfer. Arterioscler Thromb 1994;14: 105665.
  • 133
    Silver DL, Wang N, Xiao X, Tall AR. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem 2001;276: 2528793.
  • 134
    Rinniger F, Brundert M, Budzinski RM, Fruchart JC, Greten H, Castro GR. Scavenger receptor BI (SR-BI) mediates a higher selective cholesteryl ester uptake from LpA-I compared with LpA-I: A-II lipoprotein particles. Atherosclerosis 2003;166: 3140.
  • 135
    Bultel-Brienne S, Lestavel S, Pilon A, Laffont I, Tailleux A, Fruchart JC et al. Lipid free apolipoprotein E binds to the class B type I scavenger receptor I (SR-BI) and enhances cholesteryl ester uptake from lipoproteins. J Biol Chem 2002;277: 360929.
  • 136
    Trigatti B, Rigoti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol 2000;11: 12331.
  • 137
    Vieira-van Bruggen D, Kalkman I, Van Gent T, Van Tol A, Jansen H. Induction of adrenal scavenger receptor BI and increased high density lipoprotein-cholesteryl ether uptake by in vivo inhibition of hepatic lipase. J Biol Chem 1998;273: 3203841.
  • 138
    Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezón E, Champagne E et al. Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003;421: 759.
  • 139
    Berkel TJC, Fluiter K, Van Velzen AG, Vogelezang CJM, Ziere GJ. LDL-receptor-independent and -dependent uptake of lipoproteins. Atherosclerosis 1995;118 (Suppl.):S43S50.
  • 140
    Medh JD, Fry GL, Bowen SL, Ruben S, Wong H, Chapell DA. Lipoprotein lipase- and hepatic triglyceride lipase-promoted very low density lipoprotein degradation proceeds via an apolipoprotein E-dependent mechanism. J Lipid Res 2000;41: 185871.
  • 141
    Vassiliou G, Bonoist F, Lau P, Nihan Kavaslar G, McPherson R. The low density lipoprotein receptor-related protein contributes to selective uptake of high density lipoprotein cholesteryl esters by SW872 liposarcoma cells and primary human adipocytes. J Biol Chem 2001;52: 4882330.
  • 142
    St-Pierre MV, Kullak-Ublick GA, Hagenbuch B, Meier PJ. Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 2001;204: 167386.
  • 143
    Post SM, Crom R de, Haperen R van, Tol A van, Princen MG. Increased fecal bile acid excretion in transgenic mice with elevated expression of human phopholipid transfer protein. Arterioscler Thromb Vasc Biol 2003;23: 8927.
  • 144
    Groen AK, Bloks VW, Bandsma RHJ, Ottenhoff R, Chimini G, Kuipers F. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J Clin Invest 2001;108: 84350.
  • 145
    Fournier N, Atger V, Cogny A, Vedie B, Giral P, Simon A et al. Analysis of the relationship between triglyceridemia and HDL-phospholipid concentrations: consequences on the efflux capacity of serum in the Fu5AH system. Atherosclerosis 2001;157: 31523.
  • 146
    Brites FD, Bonavita CD, De Geitere C, Cloës M, Delfly B, Yael MJ et al. Alterations in the main steps of reverse cholesterol transport in male patients with primary hypertriglyceridemia and low HDL-cholesterol levels. Atherosclerosis 2000;152: 18192.
  • 147
    Fielding CJ, Reaven GM, Fielding PE. Human noninsulin-dependent diabetes. identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by selective immunoadsorption of apolipoprotein E. Proc Natl Acad Sci U S A 1982;79: 63659.
  • 148
    Syvänne M, Castro G, Dengremont C, De Geitere C, Jauhiainen M, Ehnholm C et al. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I: A-II particles and phospholipid transfer protein. Atherosclerosis 1996;127: 24553.
  • 149
    Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991;40: 37784.
  • 150
    Igau B, Castro G, Clavey V, Slomianny C, Bresson R, Drouin P et al. In vivo glycosylated LpA-I subfraction. Evidence for structural and functional alterations. Arterioscler Thromb Vasc Biol 1997;17: 28306.
  • 151
    Passarelli M, Shimabukuro AFM, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJF et al. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta 2000;301: 11934.
  • 152
    Oppenheimer MJ, Sundquist K, Bierman EL. Downregulation of high-density lipoprotein receptor in human fibroblasts by insulin and IGF-I. Diabetes 1989;38: 11722.
  • 153
    Ohgami N, Nagai R, Miyazaki A, Ikemoto M, Arai H, Horiuchi S et al. Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 2001;276: 1334855.
  • 154
    Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem 2002;277: 56927.
  • 155
    Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 2002;51: 348691.
  • 156
    Uehara Y, Engel T, Li Z, Goepfert C, Rust S, Zhou X et al. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1. Diabetes 2002;51: 29228.
  • 157
    Quintão ECR, Medina WL, Passarelli M. Reverse cholesterol transport in diabetes mellitus. Diabetes Metab Res Rev 2000;16: 23750.
  • 158
    Lamarche B, Uffelman KD, Carpentier A, Cohn JS, Steiner G, Barrett PH et al. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 1999;103: 11919.
  • 159
    Kramer-Guth A, Quaschning T, Galle J, Baumstark MW, Koniger M, Nauck M et al. Structural and compositional modifications of diabetic low-density lipoproteins influence their receptor-mediated uptake by hepatocytes. Eur J Clin Invest 1997;27: 4608.
  • 160
    Boucher P, Ducluzeau PH, Davelu P, Andreelli F, Vallier P et al. Expression and regulation by insulin of low-density lipoprotein receptor-related protein mRNA in human skeletal muscle. Biochim Biophys Acta 2002;1588: 22631.
  • 161
    Howard BV, Abbott WGH, Beltz WF, Harper IT, Fields RM, Riou JP et al. Integrated study of low density lipoprotein metabolism and very low density lipoprotein metabolism in non-insulin-dependent diabetes. Metabolism 1987;36: 8707.
  • 162
    Mero N, Malmström R, Steiner G, Taskinen MR, Syvänne M. Postprandial metabolism of apolipoprotein B-48- and B-100-containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Atherosclerosis 2000;150: 16777.
  • 163
    Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977;296: 136571.
  • 164
    Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US et al. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl-salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nature Med 1999;5: 13839.
  • 165
    Le NA, Innis-Whitehouse W, Li X, Bakker-Arkema R, Black D, Brown WV. Lipid and apolipoprotein levels and distribution in patients with hypertriglyceridemia: effect of triglyceride reductions with atorvastatin. Metabolism 2000;49: 16777.
  • 166
    Guérin M, Lassel TS, Le Goff W, Farnier M, Chapman MJ. Action of atorvastatin in combined hyperlipidemia. Preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. Arterioscler Thromb Vasc Biol 2000;20: 18997.
  • 167
    Guérin M, Dolphin PJ, Talussot C, Gardette J, Berthezène F, Chapman MJ. Pravastatin modulates cholesteryl ester transfer from HDL to apoB-containing lipoproteins and lipoprotein subspecies profile in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 1995;15: 135968.
  • 168
    Bhatnagar D, Durrington PN, Kumar S, Mackness MI, Dean J, Boulton AJ. Effect of treatment with a hydroxymethylglutaryl coenzyme A reductase inhibitor on fasting and postprandial plasma lipoproteins and cholesteryl ester transfer activity in patients with NIDDM. Diabetes 1995;44: 4605.
  • 169
    Ahnadi CE, Berthezène F, Ponsin G. Simvastatin-induced decrease in the transfer of cholesterol esters from high density lipoproteins to very low and low density lipoproteins in normolipidemic subjects. Atherosclerosis 1993;99: 21928.
  • 170
    Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 2000;406: 2037.
  • 171
    Durrington PN, Mackness MI, Bhatnagar D, Julier K, Prais H, Arrol S et al. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type IIb hyperlipoproteinaemia. Atherosclerosis 1998;138: 21725.
  • 172
    Toyota Y, Yamamura T, Miyake Y, Yamamoto A. Low density lipoprotein (LDL) binding affinity for the LDL receptor in hyperlipoproteinemia. Atherosclerosis 1999;147: 7786.
  • 173
    Franceschini G, Lovati MR, Manzoni C, Michelagnoli S, Pazzucconi F, Gianfrancheschi G et al. Effect of gemfibrozil treatment in hypercholesterolemia on low density lipoprotein (LDL) subclass distribution and LDL–cell interaction. Atherosclerosis 1995;114: 6171.
  • 174
    Guérin M, Bruckert E, Dolphin PJ, Turpin G, Chapman MJ. Fenofibrate reduces plasma cholesteryl ester transfer from HDL to VLDL and normalizes the atherogenic, dense LDL profile in combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1996;16: 76372.
  • 175
    Homma Y, Ozawa H, Kobayashi T, Yamaguchi H, Sakane H, Mikami Y et al. Effects of bezafibrate therapy on subfractions of plasma low-density lipoprotein and high-density lipoprotein, and on activities of lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein in patients with hyperlipoproteinemia. Atherosclerosis 1993;106: 191201.
  • 176
    Ponsin G, Girardot G, Berthezène F. Mechanism of the gemfibrozil-induced decrease in the transfer of cholesterol esters from high density lipoproteins to very low and low density lipoproteins. Biochem Med Metab Biol 1994;52: 5864.
  • 177
    Kahri J, Sane T, Van Tol A, Taskinen MR. Effect of gemfibrozil on the regulation of HDL subfractions in hypertriglycerideamic patients. J Intern Med 1995;238: 42936.
  • 178
    Kothari HV, Poirier KJ, Lee WH, Satoh Y. Inhibition of cholesterol ester transfer protein by CGS 25159 and changes in lipoproteins in hamsters. Atherosclerosis 1997;128: 5966.
  • 179
    Hope HR, Heuvelman D, Duffin K, Smith C, Zablocki J, Schilling R et al. Inhibition of cholesteryl ester transfer protein by substituted dithiobisnicotinic acid dimethyl ester: involvement of a critical cysteine. J Lipid Res 2000;41: 160414.
  • 180
    Kobayashi J, Okamoto M, Otabe M, Bujo H, Saito Y. Effect of HDL, from Japanese white rabbit administered a new cholesteryl ester transfer protein inhibitor JTT-705, on cholesteryl ester accumulation induced by acetylated low density lipoprotein in J774 macrophage. Atherosclerosis 2002;162: 1315.
  • 181
    Grooth GJ, Kuivenhoven JA, Stalenhoef AFH, De Graaf J, Zwinderman AH, Posma JL et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans. A randomized Phase II dose–response study. Circulation 2002;105: 215965.
  • 182
    Sugano M, Makino N, Sawada S, Otsuka S, Watanaba M, Okamoto H et al. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J Biol Chem 1998;273: 50336.
  • 183
    Whitlock ME, Swenson TL, Ramakrishnan R, Leonard MT, Marcel YL, Milne RW. Monoclonal antibody inhibition of cholesteryl ester transfer protein activity in the rabbit. Effects on lipoprotein composition and high density lipoprotein cholesteryl ester metabolism. J Clin Invest 1989;84: 12937.
  • 184
    Rittershaus CW, Miller DP, Thomas LJ, Picard MD, Honan CM, Emmett CD et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2000;20: 210612.