SEARCH

SEARCH BY CITATION

References

  • 1
    Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver R et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998;91:3527 61.
  • 2
    Russo G, Leopold JA, Loscalzo J. Vasoactive substances: nitric oxide and endothelial dysfunction in atherosclerosis. Vascul Pharmacol 2002;38:25969.
  • 3
    Voetsch B, Jin RC, Loscalzo J. Nitric oxide insufficiency and atherothrombosis. Histochem Cell Biol 2004;122:35367.
  • 4
    Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. Am J Cardiol 1995;75:3A10A.
  • 5
    Davidge ST. Prostaglandin H synthase and vascular function. Circ Res 2001;89:65060.
  • 6
    Miura H, Wachtel RE, Liu Y, Loberiza FR Jr, Saito T, Miura M et al. Flow-induced dilation of human coronary arterioles: important role of Ca(2+)-activated K(+) channels. Circulation 2001;103:19928.
  • 7
    Campbell WB, Gauthier KM. What is new in endothelium-derived hyperpolarizing factors? Curr Opin Nephrol Hypertens 2002;11:17783.
  • 8
    Garland JG, McPherson GA. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 1992;105:42935.
  • 9
    Nagao T, Vanhoutte PM. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol 1992;445:35567.
  • 10
    Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y et al. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 1996;28:70311.
  • 11
    Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 1997;100:27939.
  • 12
    Miura H, Liu Y, Gutterman DD. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels. Circulation 1999;99:31328.
  • 13
    Fliser D. Asymmetric dimethylarginine (ADMA): the silent transition from an ‘uraemic toxin’ to a global cardiovascular risk molecule. Eur J Clin Invest 2005;35:719.
  • 14
    Kaw S, Hecker M. Endothelium-derived hyperpolarizing factor, but not nitric oxide or prostacyclin release, is resistant to menadione-induced oxidative stress in the bovine coronary artery. Naunyn Schmiedebergs Arch Pharmacol 1999;359:1339.
  • 15
    Fitzpatrick FA, Ennis MD, Baze ME, Wynalda MA, McGee JE, Liggett WF. Inhibition of cyclo-oxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry. J Biol Chem 1986;261:153348.
  • 16
    Sun J, Sui X, Bradbury JA, Zeldin DC, Conte MS, Liao JK. Inhibition of vascular smooth muscle cell migration by cytochrome P450 epoxygenase-derived eicosanoids. Circ Res 2002;90:10207.
  • 17
    Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999;285:12769.
  • 18
    Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I et al. Cytochrome P450-2C is an EDHF synthase in coronary arteries. Nature 1999;401: 493–7.
  • 19
    Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996;78:41523.
  • 20
    Campbell WB, Falck JR, Gauthier K. Role of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor in bovine coronary arteries. Med Sci Monit 2001;7:57884.
  • 21
    Gauthier KM, Deeter C, Krishna UM, Reddy YK, Bondlela M, Falck JR et al. 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 2002;90:102836.
  • 22
    Gauthier KM, Edwards EM, Falck JR, Reddy DS, Campbell WB. 14,15-epoxyeicosatrienoic acid represents a transferable endothelium-dependent relaxing factor in bovine coronary arteries. Hypertension 2005;45:66671.
  • 23
    Roman RJ. P450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 2002;82:131 85.
  • 24
    Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ et al. P450 super-family: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996;6:142.
  • 25
    Scarborough PE, Ma J, Qu W, Zeldin DC. P450 subfamily CYP2J and their role in the bioactivation of arachidonic acid in extrahepatic tissues. Drug Metab Rev 1999;31:20534.
  • 26
    Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 1996;271:34608.
  • 27
    Zeldin DC, Foley J, Ma J, Boyle JE, Pascual JM, Moomaw CR et al. CYP2J subfamily P450s’ in the lung: expression, localization, and potential functional significance. Mol Pharmacol 1996;50:11117.
  • 28
    Ma J, Qu W, Scarborough PE, Tomer KB, Moomaw CR, Maronpot R et al. Molecular cloning, enzymatic characterization, developmental expression, and cellular localization of a mouse cytochrome P450 highly expressed in kidney. J Biol Chem 1999;274:1777788.
  • 29
    Zeldin DC, Foley J, Boyle JE, Moomaw CR, Tomer KB, Parker C et al. Predominant expression of an arachidonate epoxygenase in islets of Langerhans cells in human and rat pancreas. Endocrinology 1997;138:133846.
  • 30
    Enayetallah AE, French RA, Thibodeau MS, Grant DF. Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. J Histochem Cytochem 2004;52:44754.
  • 31
    Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BKCa channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol 2006;290:H4919.
  • 32
    Fisslthaler B, Hinsch N, Chataigneau T, Popp R, Kiss L, Busse R et al. Nifedipine increases cytochrome P450 2C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries. Hypertension 2000;36:2705.
  • 33
    Rosolowsky M, Campbell WB. Role of PGI2 and epoxyeicosatrienoic acids in relaxation of bovine coronary arteries to arachidonic acid. Am J Physiol 1993;264:H327H335.
  • 34
    Rosolowsky M, Falck JR, Willerson JT, Campbell WB. Synthesis of lipoxygenase and epoxygenase products of arachidonic acid by normal and stenosed canine coronary arteries. Circ Res 1990;66:60821.
  • 35
    Pinto A, Abraham NG, Mullane KM. Arachidonic acid-induced endothelial-dependent relaxations of canine coronary arteries: contribution of a cytochrome P450-dependent pathway. J Pharmacol Exp Ther 1987;240:85663.
  • 36
    Rosolowsky M, Falck JR, Campbell WB. Synthesis and biological activity of epoxyeicosatrienoic acids (EETs) by cultured bovine coronary artery endothelial cells. Adv Prostaglandin Thromboxane Leukot Res 1991;21A:2136.
  • 37
    Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation 2003;107:76976.
  • 38
    Daikh BE, Lasker JM, Raucy JL, Koop DR. Regio- and stereoselective- epoxidation of arachidonic acid by human cytochromes P450 2C8 and 2C9. J Pharmacol Exp Ther 1994;271:142733.
  • 39
    Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res 2000;87:9928.
  • 40
    Morisseau C, Hammock BD. Epoxide hydrolases. mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 2005;45:31133.
  • 41
    Fang X, Kaduce TL, Weintraub NL, Harmon S, Teesch LM, Morisseau C et al. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition. J Biol Chem 2001;276:1486774.
  • 42
    Fang X, Weintraub NL, McCaw RB, Hu S, Harmon SD. Rice JB et al. Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. Am J Physiol Heart Circ Physiol 2004;287:H2412H2420.
  • 43
    Catella F, Lawson JA, Fitzgerald DJ, FitzGerald GA. Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension. Proc Natl Acad Sci USA 1990;87:58937.
  • 44
    VanRollins M, Kaduce TL, Knapp HR, Spector AA. 14,15-Epoxyeicosatrienoic acid metabolism in endothelial cells. J Lipid Res 1993;34:193142.
  • 45
    Fang X, VanRollins M, Kaduce TL, Spector AA. Epoxyeicosatrienoic acid metabolism in arterial smooth muscle cells. J Lipid Res 1995;36:123646.
  • 46
    Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR et al. Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K(+)-channel activity. Am J Physiol 1996;270:F822F832.
  • 47
    Imig JD, Navar LG, Roman RJ, Reddy KK, Falck JR. Actions of epoxygenase metabolites on the preglomerular vasculature. J Am Soc Nephrol 1996;7:236470.
  • 48
    Carroll MA, Balazy M, Margiotta P, Falck JR, McGiff JC. Renal vasodilator activity of 5,6-epoxyeicosatrienoic acid depends upon conversion by cyclo-oxygenase and release of prostaglandins. J Biol Chem 1993;268:122606.
  • 49
    Proctor KG, Falck JR, Capdevila J. Intestinal vasodilation by epoxyeicosatrienoic acids: arachidonic acid metabolites produced by a cytochrome P450 mono-oxygenase. Circ Res 1987;60:509.
  • 50
    Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 1992;263:H519H525.
  • 51
    Gebremedhin D, Harder DR, Pratt PF, Campbell WB. Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: role of a cytochrome P450 metabolite. J Vasc Res 1998;35:27484.
  • 52
    Fang X, Kaduce TL, Weintraub NL, VanRollins M, Spector AA. Functional implications of a newly characterized pathway of 11,12-epoxyeicosatrienoic acid metabolism in arterial smooth muscle. Circ Res 1996;79:78493.
  • 53
    Fang X, Kaduce TL, Weintraub NL, Spector AA. Cytochrome P450 metabolites of arachidonic acid. rapid incorporation and hydration of 14,15-epoxyeicosatrienoic acid in arterial smooth muscle cells. Prostaglandins Leukot Essent Fatty Acids 1997;57:36771.
  • 54
    Eckman DM, Hopkins N, McBride C, Keef KD. Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid. Br J Pharmacol 1998;124:1819.
  • 55
    Imig JD, Falck JR, Wei S, Capdevila JH. Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin. J Vasc Res 2001;38:24755.
  • 56
    Imig JD, Falck JR, Inscho EW. Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. Br J Pharmacol 1999;127:1399405.
  • 57
    Oltman CL, Weintraub NL, VanRollins M, Dellsperger KC. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res 1998;83:9329.
  • 58
    Bauersachs J, Hecker M, Busse R. Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation. Br J Pharmacol 1994;113:154853.
  • 59
    Zhang Y, Oltman CL, Lu T, Lee HC, Dellsperger KC, VanRollins M. EET homologs potently dilate coronary microvessels and activate BK(Ca) channels. Am J Physiol Heart Circ Physiol 2001;280:H2430H2440.
  • 60
    Makita K, Takahashi K, Karara A, Jacobson HR, Falck JR, Capdevila JH. Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Invest 1994;94:241420.
  • 61
    Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol 2005;289:F496F503.
  • 62
    Falck JR, Krishna UM, Reddy YK, Kumar PS, Reddy KM, Hittner SB et al. Comparison of vasodilatory properties of 14,15-EET analogs: structural requirements for dilation. Am J Physiol Heart Circ Physiol 2003;284:H337H349.
  • 63
    Gauthier KM, Falck JR, Reddy LM, Campbell WB. 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol Res 2004;49:51524.
  • 64
    Li PL, Zhang DX, Ge ZD, Campbell WB. Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 2002;282:H1229H1236.
  • 65
    Li PL, Campbell WB. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ Res 1997;80:87784.
  • 66
    Hecker M, Bara AT, Bauersachs J, Busse R. Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 1994;481 (Pt 2):40714.
  • 67
    Li PL, Chen CL, Bortell R, Campbell WB. 11,12-Epoxyeicosatrienoic acid stimulates endogenous mono-ADP-ribosylation in bovine coronary arterial smooth muscle. Circ Res 1999;85:34956.
  • 68
    Spiecker M, Liao JK. Vascular protective effects of cytochrome P450 epoxygenase-derived eicosanoids. Arch Biochem Biophys 2005;433:41320.
  • 69
    Krotz F, Riexinger T, Buerkle MA, Nithipatikom K, Gloe T, Sohn HY et al. Membrane potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler Thromb Vasc Biol 2004;24:595600.
  • 70
    Jiang H, McGiff JC, Quilley J, Sacerdoti D, Reddy LM, Falck JR et al. Identification of 5,6-trans-epoxyeicosatrienoic acid in the phospholipids of red blood cells. J Biol Chem 2004;279:364128.
  • 71
    Node K, Ruan XL, Dai J, Yang SX, Graham L, Zeldin DC et al. Activation of G-alpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem 2001;276:159839.
  • 72
    King LM, Ma J, Srettabunjong S, Graves J, Bradbury JA, Li L et al. Cloning of CYP2J2 gene and identification of functional polymorphisms. Mol Pharmacol 2002;61:840 52.
  • 73
    Spiecker M, Darius H, Hankeln T, Soufi M, Sattler AM, Schaefer JR et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation 2004;110:21326.
  • 74
    King LM, Gainer JV, David GL, Dai D, Goldstein JA, Brown NJ et al. Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Pharmacogenet Genomics 2005;15:713.
  • 75
    Sandberg M, Hassett C, Adman ET, Meijer J, Omiecinski CJ. Identification and functional characterization of human soluble epoxide hydrolase genetic polymorphisms. J Biol Chem 2000;275:2887381.
  • 76
    Przybyla-Zawislak BD, Srivastava PK, Vazquez-Matias J, Mohrenweiser HW, Maxwell JE, Hammock BD et al. Polymorphisms in human soluble epoxide hydrolase. Mol Pharmacol 2003;64:48290.
  • 77
    Fornage M, Boerwinkle E, Doris PA, Jacobs D, Liu K, Wong ND. Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 2004;109:3359.
  • 78
    Ohtoshi K, Kaneto H, Node K, Nakamura Y, Shiraiwa T, Matsuhisa M et al. Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients. Biochem Biophys Res Commun 2005;331:34750.
  • 79
    Nithipatikom K, Moore JM, Isbell MA, Falck JR, Gross GJ. Epoxyeicosatrienoic acids (EETs) in cardioprotection: Ischemic versus reperfusion injury. Am J Physiol Heart Circ Physiol 2006;290:H5005.
  • 80
    Lin WK, Falck JR, Wong PY. Effect of 14,15-epoxyeicosatrienoic acid infusion on blood pressure in normal and hypertensive rats. Biochem Biophys Res Commun 1990;167:97781.
  • 81
    Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP et al. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001;88:4451.
  • 82
    Seubert J, Yang B, Bradbury JA, Graves J, Degraff LM, Gabel S et al. Enhanced post-ischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ Res 2004;95:50614.
  • 83
    Davis BB, Thompson DA, Howard LL, Morisseau C, Hammock BD, Weiss RH. Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proc Natl Acad Sci U S A 2002;99:22227.
  • 84
    Morisseau C, Goodrow MH, Newman JW, Wheelock CE, Dowdy DL, Hammock BD. Structural refinement of inhibitors of urea-based soluble epoxide hydrolases. Biochem Pharmacol 2002;63:1599608.
  • 85
    Kim IH, Morisseau C, Watanabe T, Hammock BD. Design, synthesis, and biological activity of 1,3-disubstituted ureas as potent inhibitors of the soluble epoxide hydrolase of increased water solubility. J Med Chem 2004;47:211022.
  • 86
    Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 2002;39:6904.
  • 87
    Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD et al. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J Am Soc Nephrol 2004;15:124453.
  • 88
    Zhu D, Bousamra M, Zeldin DC, Falck JR, Townsley M, Harder DR et al. Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2000;278:L335L343.
  • 89
    Zhu D, Birks EK, Dawson CA, Patel M, Falck JR, Presberg K et al. Hypoxic pulmonary vasoconstriction is modified by P450 metabolites. Am J Physiol Heart Circ Physiol 2000;279:H1526H1533.
  • 90
    Yaghi A, Webb CD, Scott JA, Mehta S, Bend JR, McCormack DG. Cytochrome P450 metabolites of arachidonic acid but not cyclooxygenase-2 metabolites contribute to the pulmonary vascular hyporeactivity in rats with acute pseudo-monas pneumonia. J Pharmacol Exp Ther 2001;297:47988.
  • 91
    Stephenson AH, Sprague RS, Losapio JL, Lonigro AJ. Differential effects of 5,6-EET on segmental pulmonary vasoactivity in the rabbit. Am J Physiol Heart Circ Physiol 2003;284:H2153H2161.
  • 92
    Stephenson AH, Sprague RS, Weintraub NL, McMurdo L, Lonigro AJ. Inhibition of cytochrome P450 attenuates hypoxemia of acute lung injury in dogs. Am J Physiol 1996;270:H1355H1362.
  • 93
    Stephenson AH, Sprague RS, Lonigro AJ. 5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog. Am J Physiol 1998;275:H100H109.