• 1
    Berndt JT, Schiavi S, Kumar R. The ‘Phosphatonins’ and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 2005;289 (6):F117082.
  • 2
    Schiavi SC, Kumar R. The phosphatonin pathway: New insights in phosphate homeostasis. Kidney Int 2004;65 (1):114.
  • 3
    Rowe PS. The wrickkened pathways of FGF23, MEPE and PHEX. Crit Rev Oral Biol Med 2004;15 (5):26481.
  • 4
    Quarles LD. FGF23, PHEX and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 2003;285 (1):E19.
  • 5
    Quarles LD. Evidence for a bone-kidney axis regulating phosphate homeostasis. J Clin Invest 2003;112 (5):6426.
  • 6
    Carpenter TO. Oncogenic osteomalacia – a complex dance of factors. N Engl J Med 2003;348 (17):17058.
  • 7
    Jan de Beur SM, Levine MA. Molecular pathogenesis of hypophosphatemic rickets. J Clin Endocrinol Metab 2002;87 (6):246773.
  • 8
    Bielesz B, Klaushofer K, Oberbauer R. Renal phosphate loss in hereditary and acquired disorders of bone mineralization. Bone 2004;35 (6):122939.
  • 9
    Walton RJ, Bijvoet OL. Nomogram for derivation of renal threshold phosphate concentration. Lancet 1975;2 (7929):30910.
  • 10
    Schmitt CP, Mehls O. The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatr Nephrol 2004;19 (5):4737.
  • 11
    Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 1997;82 (2):67481.
  • 12
    Drezner MK. Tumor-induced osteomalacia. Rev Endocr Metab Disord 2001;2 (2):17586.
  • 13
    Francis F, Henning S, Korn B, Reinhardt R, De Jong P, Poustka A et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium Nat Genet 1995;11 (2):1306.
  • 14
    Beck L, Soumounou Y, Martel J, Krishnamurthy G, Gauthier C, Goodyer CG et al. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest 1997;99 (6):12009.
  • 15
    Guo R, Quarles LD. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res 1997;12 (7):100917.
  • 16
    Du L, Desbarats M, Viel J, Glorieux FH, Cawthorn C, Ecarot B. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics 1996;36 (1):228.
  • 17
    Thompson DL, Sabbagh Y, Tenenhouse HS, Roche PC, Drezner MK, Salisbury JL et al. Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res 2002;17 (2):31120.
  • 18
    Ruchon AF, Tenenhouse HS, Marcinkiewicz M, Siegfried G, Aubin JE, DesGroseillers L et al. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res 2000;15 (8):144050.
  • 19
    Miao D, Bai X, Panda DK, Karaplis AC, Goltzman D, McKee MD. Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in Hyp mice. Bone 2004;34 (4):63847.
  • 20
    Turner AJ, Tanzawa K. Mammalian membrane metallopeptidases. NEP, ECE, KELL, PEX Faseb J 1997;11 (5):35564.
  • 21
    Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. The ADHR Consortium. Nat Genet 2000;26 (3):3458.
  • 22
    Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 2002;143 (8):317982.
  • 23
    White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001;60 (6):207986.
  • 24
    Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor-23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003;278 (11):98439.
  • 25
    Seidah NG, Prat A. Precursor convertases in the secretory pathway, cytosol and extra-cellular milieu. Essays Biochem 2002;38:7994.
  • 26
    Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003;112 (5):68392.
  • 27
    Mirams M, Robinson BG, Mason RS, Nelson AE. Bone as a source of FGF23: regulation by phosphate? Bone 2004;35 (5):11929.
  • 28
    Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004;23 (7):42132.
  • 29
    Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor-23 expression but not degradation by PHEX. J Biol Chem 2003;278 (39):3741926.
  • 30
    Kumar R. Phosphatonin – a new phosphaturetic hormone? (lessons from tumour-induced osteomalacia and X-linked hypophosphataemia). Nephrol Dial Transplant 1997;12 (1):113.
  • 31
    Kumar R. Tumor-induced osteomalacia and the regulation of phosphate homeostasis. Bone 2000;27 (3):3338.
  • 32
    Rowe PS, De Zoysa PA, Dong R, Wang HR, White KE, Econs MJ et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 2000;67 (1):5468.
  • 33
    De Beur SM, Finnegan RB, Vassiliadis J, Cook B, Barberio D, Estes S et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 2002;17 (6):110210.
  • 34
    Argiro L, Desbarats M, Glorieux FH, Ecarot B. Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 2001;74 (3):34251.
  • 35
    MacDougall M, Simmons D, Gu TT, Dong J. MEPE/OF45, a new dentin/bone matrix protein and candidate gene for dentin diseases mapping to chromosome 4q21. Connect Tissue Res 2002;43 (2–3):32030.
  • 36
    Petersen DN, Tkalcevic GT, Mansolf AL, Rivera-Gonzalez R, Brown TA. Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J Biol Chem 2000;275 (46):3617280.
  • 37
    Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 2004;34 (2):30319.
  • 38
    Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR et al. Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 2005;36 (1):3346.
  • 39
    Siggelkow H, Schmidt E, Hennies B, Hufner M. Evidence of down-regulation of matrix extra-cellular phosphoglycoprotein during terminal differentiation in human osteoblasts. Bone 2004;35 (2):5706.
  • 40
    Igarashi M, Kamiya N, Ito K, Takagi M. In situ localization and in vitro expression of osteoblast/osteocyte factor-45 mRNA during bone cell differentiation. Histochem J 2002;34 (5):25563.
  • 41
    Lu C, Huang S, Miclau T, Helms JA, Colnot C. Mepe is expressed during skeletal development and regeneration. Histochem Cell Biol 2004;121 (6):4939.
  • 42
    Jain A, Fedarko NS, Collins MT, Gelman R, Ankrom MA, Tayback M et al. Serum levels of matrix extra-cellular phosphoglycoprotein (MEPE) in normal humans correlate with serum phosphorus, parathyroid hormone and bone mineral density. J Clin Endocrinol Metab 2004;89 (8):415861.
  • 43
    Berndt T, Craig TA, Bowe AE, Vassiliadis J, Reczek D, Finnegan R et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 2003;112 (5):78594.
  • 44
    Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003;116 (13):262734.
  • 45
    Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004;341:1939.
  • 46
    White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide over-expressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 2001;86 (2):497500.
  • 47
    Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001;284 (4):97781.
  • 48
    Larsson T, Zahradnik R, Lavigne J, Ljunggren O, Juppner H, Jonsson KB. Immunohistochemical detection of FGF-23 protein in tumors that cause oncogenic osteomalacia. Eur J Endocrinol 2003;148 (2):26976.
  • 49
    Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 2001;98 (11):65005.
  • 50
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19 (3):42935.
  • 51
    Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 2004;314 (2):40914.
  • 52
    Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha (I) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology 2004;145 (7):308794.
  • 53
    Campos M, Couture C, Hirata IY, Juliano MA, Loisel TP, Crine P et al. Human recombinant endopeptidase PHEX has a strict S1′ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J 2003;373 (1):2719.
  • 54
    Guo R, Liu S, Spurney RF, Quarles LD. Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab 2001;281 (4):E83747.
  • 55
    Benet-Pages A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004;35 (2):45562.
  • 56
    Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003;348 (17):165663.
  • 57
    Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 2002;87 (11):495760.
  • 58
    Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 2003;18 (7):122734.
  • 59
    Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflügers Arch 2004;447 (5):7637.
  • 60
    Kumar R, Haugen JD, Wieben ED, Londowski JM, Cai Q. Inhibitors of renal epithelial phosphate transport in tumor-induced osteomalacia and uremia. Proc Assoc Am Physicians 1995;107 (3):296305.
  • 61
    Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003;64 (6):22729.
  • 62
    Imanishi Y, Inaba M, Nakatsuka K, Nagasue K, Okuno S, Yoshihara A et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 2004;65 (5):19436.
  • 63
    Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 2004;44 (2):2506.
  • 64
    Sato T, Tominaga Y, Ueki T, Goto N, Matsuoka S, Katayama A et al. Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis 2004;44 (3):4817.
  • 65
    Bai X, Miao D, Li J, Goltzman D, Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 2004;145 (11):526979.
  • 66
    Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production. J Biol Chem 2003;278 (4):220611.
  • 67
    Singh RJ, Kumar R. Fibroblast growth factor 23 concentrations in humoral hypercalcemia of malignancy and hyperparathyroidism. Mayo Clin Proc 2003;78 (7):8269.
  • 68
    Tebben PJ, Singh RJ, Clarke BL, Kumar R. Fibroblast growth factor 23, parathyroid hormone and 1 alpha, 25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin Proc 2004;79 (12):150813.
  • 69
    Yamashita H, Yamashita T, Miyamoto M, Shigematsu T, Kazama JJ, Shimada T et al. Fibroblast growth factor (FGF)-23 in patients with primary hyperparathyroidism. Eur J Endocrinol 2004;151 (1):5560.
  • 70
    Gupta A, Winer K, Econs MJ, Marx SJ, Collins MT. FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 2004;89 (9):448992.
  • 71
    Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S et al. Circulating FGF-23 is regulated by 1 alpha, 25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005;280 (4):25439.
  • 72
    Ito M, Sakai Y, Furumoto M, Segawa H, Haito S, Yamanaka S et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K562 cells. Am J Physiol Endocrinol Metab 2005;288 (6):E11019.
  • 73
    Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 2005;90 (3):151924.
  • 74
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T et al. Targeted ablation of Fgf-23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism. J Clin Invest 2004;113 (4):5618.
  • 75
    Kazama JJ, Sato F, Omori K, Hama H, Yamamoto S, Maruyama H et al. Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients. Kidney Int 2005;67 (3):11205.
  • 76
    Nakanishi S, Kazama JJ, Nii-Kono T, Omori K, Yamashita T, Fukumoto S et al. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int 2005;67 (3):11718.
  • 77
    Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ et al. A novel recessive mutation in Fibroblast growth factor-23 (FGF23) causes familial tumoral calcinosis. J Clin Endocrinol Metab 2005;90 (4):24247.
  • 78
    Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005;14 (3):38590.
  • 79
    Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 2004;36 (6):57981.
  • 80
    Ichikawa S, Lyles KW, Econs MJ. A novel GALNT3 Mutation in a pseudo-autosomal dominant form of tumoral calcinosis: Evidence that the disorder is autosomal recessive. J Clin Endocrinol Metab 2005;90 (4):24203.
  • 81
    Carpenter TO, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, Shimkets R. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab 2005;90 (2):101220.
  • 82
    Brewer AJ, Canaff L, Hendy GN, Tenenhouse HS. Differential regulation of PHEX expression in bone and parathyroid gland by chronic renal insufficiency and 1, 25-dihydroxyvitamin D3. Am J Physiol Renal Physiol 2004;286 (4):F73948.