SEARCH

SEARCH BY CITATION

References

  • 1
    Rosenbauer J, Herzig P, von Kries R, Neu A, Giani G. Temporal, seasonal, and geographical incidence patterns of type I diabetes mellitus in children under 5 years of age in Germany. Diabetologia 1999;42:10559.
  • 2
    Iafusco D, Stazi MA, Cotichini R, Cotellessa M, Martinucci ME, Mazzella M et al. ; Early Onset Diabetes Study Group of the Italian Society of Paediatric Endocrinology and Diabetology. Permanent diabetes mellitus in the first year of life. Diabetologia 2002;45: 798804.
  • 3
    Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ 2006;175:16570.
  • 4
    Porter JR, Barrett TG. Acquired non-type 1 diabetes in childhood: subtypes, diagnosis, and management. Arch Dis Child 2004;89: 113844.
  • 5
    Komulainen J, Kulmala P, Savola K, Lounamaa R, Ilonen J, Reijonen H et al. Clinical, autoimmune, and genetic characteristics of very young children with type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 1999;22:19505.
  • 6
    Lindberg B, Ivarsson SA, Landin-Olsson M, Sundkvist G, Svanberg L, Lernmark A. Islet autoantibodies in cord blood from children who developed type I (insulin-dependent) diabetes mellitus before 15 years of age. Diabetologia 1999;42:1817.
  • 7
    Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 2005;54(Suppl. 2):S2531.
  • 8
    Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2009;10(Suppl. 12):3342.
  • 9
    Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA et al. ; The Type 1 Diabetes Genetics Consortium. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009;41:7037.
  • 10
    Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009;360:164654.
  • 11
    Edghill EL, Dix RJ, Flanagan SE, Bingley PJ, Hattersley AT, Ellard S et al. HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes 2006;55:18958.
  • 12
    Schatz D, Krischer J, Horne G, Riley W, Spillar R, Silverstein J et al. Islet cell antibodies predict insulin-dependent diabetes in United States school age children as powerfully as in unaffected relatives. J Clin Invest 1994;93:24037.
  • 13
    Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 2007;104:170405.
  • 14
    Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG. Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 2004;140:8826.
  • 15
    Rubio-Cabezas O, Minton JA, Caswell R, Shield JP, Deiss D, Sumnik Z et al. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 2009;32:1116.
  • 16
    Gicquel C, Le Bouc Y. Hormonal regulation of fetal growth. Horm Res 2006;65(Suppl. 3):2833.
  • 17
    Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008;57:103442.
  • 18
    von Mühlendahl KE, Herkenhoff H. Long-term course of neonatal diabetes. N Engl J Med 1995;333:7048.
  • 19
    Shield JP. Neonatal diabetes: new insights into aetiology and implications. Horm Res 2000;53(Suppl. 1):711.
  • 20
    Massa O, Iafusco D, D’Amato E, Gloyn AL, Hattersley AT, Pasquino B et al. ; Early Onset Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum Mutat 2005; 25: 227.
  • 21
    Polak M, Cavé H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2007;2:112.
  • 22
    Miki T, Iwanaga T, Nagashima K, Ihara Y, Seino S. Roles of ATP-sensitive K+ channels in cell survival and differentiation in the endocrine pancreas. Diabetes 2001;50(Suppl.1):S48S51.
  • 23
    Stanik J, Gasperikova D, Paskova M, Barak L, Javorkova J, Jancova E et al. Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers. J Clin Endocrinol Metab 2007;92:127682.
  • 24
    Slingerland AS, Shields BM, Flanagan SE, Bruining GJ, Noordam K, Gach A et al. Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. Diabetologia 2009;52:16835.
  • 25
    Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER et al. Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet 2005;14:92534.
  • 26
    Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;29:183849.
  • 27
    Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM. Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc Natl Acad Sci USA 2004;14:1753944.
  • 28
    Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K, Baevre H et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 2004;53:27138.
  • 29
    Vaxillaire M, Populaire C, Busiah K, Cavé H, Gloyn AL, Hattersley AT et al. Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 2004;53:271922.
  • 30
    Mlynarski W, Tarasov AI, Gach A, Girard CA, Pietrzak I, Zubcevic L et al. Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat Clin Pract Neurol 2007;3:6405.
  • 31
    Slingerland AS, Nuboer R, Hadders-Algra M, Hattersley AT, Bruining GJ. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia 2006;49:255963.
  • 32
    Noffs MH, Belzunces E, Rahal MA, Moisés RS. Sulfonylrea treatment in permanent neonatal diabetes due to G53D mutation in the KCNJ11 gene: improvement in glycemic control and neurological function. Diabetes Care 2007;30:e108.
  • 33
    Clark RH, McTaggart JS, Webster R, Mannikko R, Iberl M, Sim XL. Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in origin. Science 2010;329:45861.
  • 34
    Sakura H, Ammälä C, Smith PA, Gribble FM, Ashcroft FM. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 1995;377:33844.
  • 35
    Proks P, Girard C, Baevre H, Njølstad PR, Ashcroft FM. Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy. Diabetes 2006;55:17317.
  • 36
    Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 2006;355:46777.
  • 37
    Tonini G, Bizzarri C, Bonfanti R, Vanelli M, Cerutti F, Faleschini E et al. Sulfonylurea treatment outweighs insulin therapy in short-term metabolic control of patients with permanent neonatal diabetes mellitus due to activating mutations of the KCNJ11 (KIR6.2) gene. Diabetologia 2006;49:22103.
  • 38
    Zung A, Glaser B, Nimri R, Zadik Z. Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J Clin Endocrinol Metab 2004;89:55047.
  • 39
    Kumaraguru J, Flanagan SE, Greeley SA, Nuboer R, Støy J, Philipson LH et al. Tooth discoloration in patients with neonatal diabetes after transfer onto glibenclamide: a previously unreported side effect. Diabetes Care 2009;32:142830.
  • 40
    Malecki MT, Skupien J, Klupa T, Wanic K, Mlynarski W, Gach A et al. Transfer to sulphonylurea therapy of adult subjects with permanent neonatal diabetes due to KCNJ11 activating mutations: evidence for improvement in insulin sensitivity. Diabetes Care 2007;30:1479.
  • 41
    Klupa T, Edghill EL, Nazim J, Sieradzki J, Ellard S, Hattersley AT et al. The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of β-cell function among carriers of the R201H mutation. Diabetologia 2005;48:102931.
  • 42
    Klupa T, Skupien J, Mirkiewicz-Sieradzka B, Gach A, Noczynska A, Zubkiewicz-Kucharska A et al. Efficacy and safety of sulfonylurea use in permanent neonatal diabetes due to KCNJ11 gene mutations: 34-month median follow-up. Diabetes Technol Ther 2010;12:38791.
  • 43
    Klupa T, Kozek E, Nowak N, Cyganek K, Gach A, Milewicz T et al. The First Case Report of Sulfonylurea Use in a Woman with Permanent Neonatal Diabetes Mellitus due to KCNJ11 Mutation during a High-Risk Pregnancy. J Clin Endocrinol Metab 2010;95: 3599604.
  • 44
    Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes Metab 2007;9(Suppl. 2):2839.
  • 45
    Vaxillaire M, Dechaume A, Busiah K, Cavé H, Pereira S, Scharfmann R et al. New ABCC8 mutations in relapsing neonatal diabetes and clinical features. Diabetes 2007;56:173741.
  • 46
    Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B et al. A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 2006;15:1793800.
  • 47
    Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006;355:45666.
  • 48
    Ellard S, Flanagan SE, Girard CA, Patch AM, Harries LW, Parrish A et al. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet 2007;81:37582.
  • 49
    Klupa T, Kowalska I, Wyka K, Skupien J, Patch AM, Flanagan SE et al. Mutations in the ABCC8 (SUR1 subunit of the K(ATP) channel) gene are associated with a variable clinical phenotype. Clin Endocrinol (Oxf) 2009;71:35862.
  • 50
    Proks P, Shimomura K, Craig TJ, Girard CA, Ashcroft FM. Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Hum Mol Genet 2007;16:20119.
  • 51
    Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 2008;31:2049.
  • 52
    Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 2007;104:150404.
  • 53
    Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T. Dominant nagative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 2003;52:40916.
  • 54
    Garin I, Edghill EL, Akerman I, Rubio-Cabezas O, Rica I, Locke JM et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA 2010;107:310510.
  • 55
    Matschinsky FM. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 1996;45:22341.
  • 56
    Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009;30:151226.
  • 57
    Njølstad PR, Søvik O, Cuesta-Muñoz A, Bjørkhaug L, Massa O, Barbetti F et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 2001;344:158892.
  • 58
    Molven A, Ringdal M, Nordbø AM, Raeder H, Støy J, Lipkind GM et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes 2008;57:11315.
  • 59
    Boesgaard TW, Pruhova S, Andersson EA, Cinek O, Obermannova B, Lauenborg J. Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY). BMC Med Genet 2010;11:426.
  • 60
    Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997;15:10610.
  • 61
    Nicolino M, Claiborn KC, Senée V, Boland A, Stoffers DA, Julier C. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes 2010;59:73340.
  • 62
    Hoveyda N, Shield JP, Garrett C, Chong WK, Beardsall K, Bentsi-Enchill E. Neo-natal diabetes mellitus and cerebellar hypoplasia/ agenesis: report of a new recessive syndrome. J Med Genet 1999;36:7004.
  • 63
    Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004;36:13015.
  • 64
    Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syn-drome. J Med Genet 2002;39:53745.
  • 65
    Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat Genet 2000;25:4069.
  • 66
    Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Gene 1999;23:3238.
  • 67
    Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 2010;59:232631.
  • 68
    Mitchell J, Punthakee Z, Lo B, Bernard C, Chong K, Newman C et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia 2004;47:21607.
  • 69
    Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010;463:77580.
  • 70
    Rubio-Cabezas O, Patch AM, Minton JA, Flanagan SE, Edghill EL, Hussain K et al. Wolcott–Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab 2009;94:416270.
  • 71
    Yoo HW, Shin YL, Seo EJ, Kim GH. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr 2002;161:3513.
  • 72
    Senée V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 2006;38: 6827.
  • 73
    Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 1999;22:3004.
  • 74
    Metz C, Cavé H, Bertrand AM, Deffert C, Gueguen-Giroux B, Czernichow P et al. Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J Pediatr 2002;141:4839.
  • 75
    McCarthy MI, Hattersley AT. Molecular diagnostics in monogenic and multifactorial forms of type 2 diabetes. Expert Rev Mol Diagn 2001;1:40312.
  • 76
    Kentrup H, Altmüller J, Pfäffle R, Heimann G. Neonatal diabetes mellitus with hypergalactosemia. Eur J Endocrinol 1999;141:37981.
  • 77
    Kang HS, Kim YS, ZeRuth G, Beak JY, Gerrish K, Kilic G et al. Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 2009;29:636679.
  • 78
    Fleming JC, Tartaglini E, Steinkamp MP, Schorderet DF, Cohen N, Neufeld EJ. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet 1999;22:3058.
  • 79
    Hattersley AT. Molecular genetics goes to the diabetes clinic. Clin Med 2005;5:47681.
  • 80
    Ellard S, Bellanné-Chantelot C, Hattersley AT; European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008;51:54653.
  • 81
    Mohamadi A, Clark LM, Lipkin PH, Mahone EM, Wodka EL, Plotnick LP. Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Pediatr Diabetes 2010;11:2037.
  • 82
    Gloyn AL, Cummings EA, Edghill EL, Harries LW, Scott R, Costa T et al. Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. J Clin Endocrinol Metab 2004;89:39325.
  • 83
    Edghill EL, Gloyn AL, Goriely A, Harries LW, Flanagan SE, Rankin J et al. Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. J Clin Endocrinol Metab 2007;92:17737.
  • 84
    Slingerland AS, Hurkx W, Noordam K, Flanagan SE, Jukema JW, Meiners LC et al. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med 2008;25:27781.
  • 85
    Yorifuji T, Nagashima K, Kurokawa K, Kawai M, Oishi M, Akazawa Y et al. The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J Clin Endocrinol Metab 2005;90:31748.
  • 86
    Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009;30:17080.