• 1
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:104753.
  • 2
    International Diabetes Federation. IDF Diabetes Atlas, 4th edn. Brussels, Belgium: International Diabetes Federation, 2009.
  • 3
    Pierce M, Keen H, Bradley C. Risk of diabetes in offspring of parents with non-insulin-dependent diabetes. Diabet Med 1995;12:613.
  • 4
    Wild SH, Forouhi NG. What is the scale of the future diabetes epidemic, and how certain are we about it? Diabetologia 2007;50:9035.
  • 5
    Krebs M, Roden M. Nutrient-induced insulin resistance in human skeletal muscle. Curr Med Chem 2004;11:9018.
  • 6
    Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006;12:626.
  • 7
    Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J et al. Prevalence of diabetes among men and women in China. N Engl J Med 2010;362:1090101.
  • 8
    Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia 2010;53:1020.
  • 9
    Phielix E, Szendroedi J, Roden M. Mitochondrial function and insulin resistance during aging – a mini-review. Gerontology 2010; [Epub ahead of print].
  • 10
    Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 1987;30:7638.
  • 11
    Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Erikkson J et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992;35:10607.
  • 12
    Matsuda A, Kuzuya T. Relationship between obesity and concordance rate for type 2 (non-insulin-dependent) diabetes mellitus among twins. Diabetes Res Clin Pract 1994;26:13743.
  • 13
    Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 1999;42:14650.
  • 14
    Poulsen P, Grunnet LG, Pilgaard K, Storgaard H, Alibegovic A, Sonne MP et al. Increased risk of type 2 diabetes in elderly twins. Diabetes 2009;58:13505.
  • 15
    Moore AF, Florez JC. Genetic susceptibility to type 2 diabetes and implications for antidiabetic therapy. Annu Rev Med 2008;59:95111.
  • 16
    Diamond J. The double puzzle of diabetes. Nature 2003;423:599602.
  • 17
    Diabetes Genetics Initiative of Broad Research Institute of Harvard and MIT, Lund University, and Novartis Institutes for BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316:13316.
  • 18
    Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007;316:13415.
  • 19
    Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007;445:8815.
  • 20
    Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007;316:133641.
  • 21
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:66178.
  • 22
    Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007;39:7705.
  • 23
    Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:63845.
  • 24
    Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009;41:8994.
  • 25
    Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proença C et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009;41:11105 (Erratum in: Nat Genet 2009;41:1156).
  • 26
    Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G et al. Variants in MNTR1B influence fasting glucose levels. Nat Genet 2009;41:7781.
  • 27
    Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:10516 (Erratum in: Nat Genet 2010;42:464).
  • 28
    Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 2010;42:1428.
  • 29
    Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010;42:57989.
  • 30
    Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J et al. Common variants at ten genomic loci influence hemoglobin A1c levels via glycemic and non-glycemic pathways. Diabetes 2010; [Epub ahead of print].
  • 31
    Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:133544.
  • 32
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010;362:16676.
  • 33
    Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:3203.
  • 34
    Marzi C, Huth C, Kolz M, Grallert H, Meisinger C, Wichmann HE et al. Variants of the transcription factor 7-like 2 gene (TCF7L2) are strongly associated with type 2 diabetes but not with the metabolic syndrome in the MONICA/KORA surveys. Horm Metab Res 2007;39:4652.
  • 35
    Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 2008;40:1098102.
  • 36
    Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008;40:10927.
  • 37
    Grallert H, Herder C, Marzi C, Meisinger C, Wichmann HE, Rathmann W et al. Association of genetic variation in KCNQ1 with type 2 diabetes in the KORA surveys. Horm Metab Res 2010;42:14951.
  • 38
    Doria A, Patti ME, Kahn CR. The emerging genetic architecture of type 2 diabetes. Cell Metab 2008;8:186200.
  • 39
    McCarthy MI, Hattersley AT. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 2008;57:288998.
  • 40
    Grant RW, Moore AF, Florez JC. Genetic architecture of type 2 diabetes: recent progress and clinical implications. Diabetes Care 2009;32:110714.
  • 41
    Salanti G, Southam L, Altshuler D, Ardlie K, Barroso I, Boehnke M et al. Human Genome Epidemiology (HuGE) review. Underlying genetic models of inheritance in established type 2 diabetes associations. Am J Epidemiol 2009;170:53745.
  • 42
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33(Suppl. 1):S629.
  • 43
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010;42:5659.
  • 44
    Vimaleswaran KS, Loos RJF. Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med 2010;12:e7.
  • 45
    Schunkert H, Erdmann J, Samani NJ. Genetics of myocardial infarction: a progress report. Eur Heart J 2010;31:91825.
  • 46
    Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 2008;51:110010.
  • 47
    Stolerman ES, Florez JC. Genomics of type 2 diabetes mellitus: implications for the clinician. Nat Rev Endocrinol 2009;5:42936.
  • 48
    Lehtovirta M, Pietiläinen KH, Levälahti E, Heikkilä K, Groop L, Silventoinen K et al. Evidence that BMI and type 2 diabetes share only a minor fraction of genetic variance: a follow-up study of 23,585 monozygotic and dizygotic twins from the Finnish Twin Cohort Study. Diabetologia 2010;53:131421.
  • 49
    Herder C, Rathmann W, Strassburger K, Finner H, Grallert H, Huth C et al. Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies. Horm Metab Res 2008;40:7226.
  • 50
    Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009;41:2534.
  • 51
    Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009;41:1824.
  • 52
    Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 2009;5:e1000508.
  • 53
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:88994.
  • 54
    Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007;39:7246.
  • 55
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007;357:44353.
  • 56
    Drieschner N, Belge G, Rippe V, Meiboom M, Loeschke S, Bullerdiek J et al. Evidence for a 3p25 breakpoint hot spot region in thyroid tumors of follicular origin. Thyroid 2006;16:10916.
  • 57
    Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009;41:5665.
  • 58
    Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 2009;41:4755.
  • 59
    Buch S, Schafmayer C, Völzke H, Becker C, Franke A, von Eller-Eberstein H et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet 2007;39:9959.
  • 60
    Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J et al. A novel mutation in the potassium channel KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997;15:1869.
  • 61
    Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 2003;299:2514.
  • 62
    Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 2008;40:21724.
  • 63
    Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 2009;41:9205.
  • 64
    Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007;39:97783.
  • 65
    Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008;40:3105.
  • 66
    Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet 2009;41:90914.
  • 67
    Johansson A, Marroni F, Hayward C, Franklin CS, Kirichenko AV, Jonasson I et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum Mol Genet 2009;18:37380.
  • 68
    Barrett JC, Hansoul S, Nicolae DL, Cho JS, Duerr RH, Rioux JD et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008;40:95562.
  • 69
    Quaranta M, Burden AD, Griffiths CE, Worthington J, Barker JN, Trembath RC et al. Differential contribution of CDKAL1 variants to psoriasis, Crohn’s disease and type II diabetes. Genes Immun 2009;10:6548.
  • 70
    DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 2010;53:127087.
  • 71
    Meyer TE, Boerwinkle E, Morrison AC, Volcik KA, Sanderson M, Coker AL et al. Diabetes genes and prostate cancer in the Atherosclerosis Risk in Communities Study. Cancer Epidemiol Biomarkers Prev 2010;19:55865.
  • 72
    Frayling TM, Colhoun H, Florez JC. A genetic link between type 2 diabetes and prostate cancer. Diabetologia 2008;51:175760.
  • 73
    Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and Cancer. Endocr Relat Cancer 2009;16:110323.
  • 74
    Van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 2008;57:31228.
  • 75
    Lango H, UK Type 2 Diabetes Genetics Consortium, Palmer CN, Morris AD, Zeggini E, Hattersley AT et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 2008;57:312935.
  • 76
    Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008;359:222032.
  • 77
    Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008;359:220819 (Erratum in: N Engl J Med 2009;360:648).
  • 78
    Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score – the CoLaus Study. Diabetologia 2009;52:6008.
  • 79
    Sparso T, Grarup N, Andreasen C, Albrechtsen A, Holmkvist J, Andersen G et al. Combined analysis of 19 common validated type 2 diabetes susceptibility gene variants shows moderate discriminative value and no evidence of gene-gene interaction. Diabetologia 2009;52:130814.
  • 80
    Schulze MB, Weikert C, Pischon T, Bergmann MM, Al-Hasani H, Schleicher E et al. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care 2009;32:21169.
  • 81
    Cornelis MC, Qi L, Zhang C, Kraft P, Manson JA, Cai T et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European Ancestry. Ann Intern Med 2009;150:54150.
  • 82
    Talmud PJ, Hingorani AD, Cooper JA, Marmot MG, Brunner EJ, Kumari M et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 2010;340:b4838.
  • 83
    Wang J, Stancakova A, Kuusisto J, Laakso M. Identification of undiagnosed type 2 diabetic individuals by the Finnish Diabetes Risk Score and biochemical and genetic markers: a population-based study of 7232 Finnish men. J Clin Endocrinol Metab 2010;95:385862.
  • 84
    Fontaine-Bisson B, Renström F, Rolandsson O, MAGIC Investigators, Payne F, Hallmans G et al. Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population. Diabetologia 2010;53:215562.
  • 85
    Qi Q, Li H, Wu Y, Liu C, Wu H, Yu Z et al. Combined effects of 17 common genetic variants on type 2 diabetes risk in a Han Chinese population. Diabetologia 2010;53:21636.
  • 86
    Janssens ACJW, Aulchenko YS, Elefante S, Borsboom GJJM, Steyerberg EW, van Duijn CM. Predictive testing for complex diseases using multiple genes: fact or fiction? Genet Med 2006;8:395400.
  • 87
    Gibson G. Hints of hidden heritability in GWAS. Nat Genet 2010;42:55860.
  • 88
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. Finding the missing heritability of complex diseases. Nature 2009;461:74753.
  • 89
    Pollex RL, Hegele RA. Copy number variation in the human genome and its implications for cardiovascular disease. Circulation 2007;115:31308.
  • 90
    Cohen J. DNA duplications and deletions help determine health. Science 2007;317:13157.
  • 91
    Wang K, Li WD, Glessner JT, Grant SFA, Hakornarson H, Price RA. Large copy number variations are enriched in cases with moderate to extreme obesity. Diabetes 2010;59:26904.
  • 92
    Piotrowski A, Bruder CEG, Andersson R, Diaz de Stahl T, Menzel U, Sandgren J et al. Somatic mosaicism for copy number variation in differentiated human tissues. Hum Mutat 2008;29:111824.
  • 93
    Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S et al. Parental origin of sequence variants associated with complex diseases. Nature 2009;462:86874.
  • 94
    Bjornsson HT, Sigursson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 2008;299:287783.
  • 95
    Cornelis MC, Qi L, Kraft P, Hu FB. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr 2009;89:125662.
  • 96
    Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker Pl, Shuldiner AR et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006;355:24150.
  • 97
    Wang J, Kuusisto J, Vänttinen M, Kuulasmaa T, Lindström J, Tuomilehto J et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 2007;50:1192200.
  • 98
    Bo S, Gambino R, Ciccone G, Rosato R, Milanesio N, Villois P et al. Effects of TCF7L2 polymorphisms on glucose values after a lifestyle intervention. Am J Clin Nutr 2009;90:15028.
  • 99
    Haupt A, Thamer C, Heni M, Ketterer C, Machann J, Scihck F et al. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes 2010;59:74750.
  • 100
    Reinehr T, Friedel S, Mueller TD, Toschke AM, Hebebrand J, Hinney A. Evidence for an influence of TCF7L2 polymorphism rs7903146 on insulin resistance and sensitivity indices in overweight children and adolescents during a lifestyle intervention. Int J Obes (Lond) 2008;32:15214.
  • 101
    Pearson ER. Translating TCF7L2: from gene to function. Diabetologia 2009;52:122730.
  • 102
    Pearson ER, Donnelly LA, Kimber C, Whitley A, Doney AS, McCarthy MI et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 2007;56:217882.
  • 103
    Florez JC, Jablonski KA, Sun MW, Bayley N, Kahn SE, Shamoon H et al. Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J Clin Endocrinol Metab 2007;92:15029.
  • 104
    Florez JC, Jablonski KA, Kahn SE, Franks PW, Dabelea D, Hamman RF et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 2007;56:5316.
  • 105
    Kilpeläinen TO, Lakka TA, Laaksonen DE, Laukkanen O, Lindström J, Eriksson JG et al. Physical activity modifies the effect of SNPs in the SLC2A2 (GLUT2) and ABCC8 (SUR1) genes on the risk of developing type 2 diabetes. Physiol Genomics 2007;31:26472.
  • 106
    Weyrich P, Machicao F, Reinhardt J, Machann J, Schick F, Tschritter O et al. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention – the TULIP Study. BMC Med Genet 2008;9:100.
  • 107
    Kacerovsky-Bielesz G, Chmelik M, Ling C, Pokan R, Szendroedi J, Farukuoye M et al. Short-term exercise training does not stimulate skeletal muscle ATP synthesis in relatives of humans with type 2 diabetes. Diabetes 2009;58:133341.
  • 108
    Newgard CB, Attie AD. Getting biological about the genetics of diabetes. Nat Med 2010;16:38891.
  • 109
    Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008;40:695701.
  • 110
    O’Rahilly S. Human genetics illuminates the paths to metabolic disease. Nature 2009;462:30714.
  • 111
    Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 2007;39:9513.