• 1
    To test predictions of the river habitat templet and the patch dynamics concept, trends in species traits and species richness of aquatic beetles were related to the spatial-temporal variability of eighteen habitat types in the alluvial floodplain of the French Upper Rhône River. One hundred and twenty species of beetles were used in this analysis.
  • 2
    The basic information was obtained either from the literature (for most of the species traits) or from observations made at approximately 500 sampling sites in the Brégnier-Cordon and Jons sections over the past 19 years (for habitat utilization). This information was structured by a fuzzy coding technique and examined by ordination analyses.
  • 3
    Analyses of the relationships among nineteen species traits revealed a clear distinction according to traits such as body form (for adults), functional feeding type and food (adults and larvae), attachment to the substrate and dissemination potential (adults and larvae), and patterns of aquatic and/or terrestrial life of adults and larvae. Species traits such as number of descendants per reproductive cycle, and number of reproductive cycles per year or per individual showed less contrast, because these traits are rather homogeneous in aquatic beetles.
  • 4
    Analyses of the habitat utilization by the aquatic beetles revealed a vertical gradient that separates interstitial from superficial habitats, and a transverse gradient for the superficial habitats, which extends from the main channel towards permanent oxbow lakes and temporary waters.
  • 5
    The significant relationship betweeen species traits and habitat utilization demonstrates that most beetle species use a particular set of habitat types with a particular set of species trait modalities.
  • 6
    Species traits of aquatic beetles are homogeneous but evidently very successful and are adapted to many potential conditions of spatial–temporal variability. Because of this homogeneity, observations on aquatic beetles do not support trends of traits in the framework of spatial–temporal variability predicted from the river habitat templet.
  • 7
    The observed species richness of aquatic beetles is low in habitat types with a low spatial–temporal variability, increases as spatial variability increases, and tends to be highest at intermediate temporal variability. This pattern matches predictions of the patch dynamics concept.