SEARCH

SEARCH BY CITATION

References

  • Bazzaz, F.A. & Miao, S.L. (1993) Successional status, seed size, and responses of tree seedlings to CO2, light, and nutrients. Ecology 74, 104112.
  • Bazzaz, F.A., Coleman, J.S. & Morse, S.R. (1990) Growth responses of seven major co-occurring tree species of the northeastern United States to elevated CO2. Canadian Journal of Forest Research 20, 14791484.
  • Callaway, R.M. & Aschehoug, E.T. (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521523.
  • Di Castri, F. (1989) History of biological invasions with emphasis on the Old World. Biological Invasions: A Global Perspective (eds J.Drake, F.Di Castri, R.Groves et al.), pp. 130. Wiley, New York.
  • Clark, D.A. & Clark, D.B. (1992) Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecological Monographs 62, 315344.
  • D’Antonio, C.M. & Vitousek, P.M. (1992) Biological invasions by exotic grasses, the grass/fire cycle and global change. Annual Review of Ecology and Systematics 23, 6387.
  • Dukes, J.S. (2002) Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecology 160, 225234.
  • Dukes, J.S. & Mooney, H.A. (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14, 135139.
  • Granados, J. & Körner, C. (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Global Change Biology 8, 11091117.
  • Hättenschwiler, S. (2001) Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129, 3142.
  • Hättenschwiler, S. & Körner, C. (2000) Tree seedling responses to in situ CO2-enrichment differ among species and depend on understorey light availability. Global Change Biology 6, 215228.
  • Huenneke, L.F. (1997) Outlook for plant invasions: interactions with other agents of global change. Assessment and Management of Plant Invasions (eds J.O.Luken & J.W.Thieret), pp. 95103. Springer Verlag, New York/Heidelberg/Berlin.
  • Kerstiens, G. (1998) Shade-tolerance as a predictor of responses to elevated CO2 in trees. Physiolgia Plantarum 102, 472480.
  • Klötzli, F., Walther, G.-R., Carraro, G. & Grundmann, A. (1996) Anlaufender Biomwandel in Insubrien. Verhandlungen der Gesellschaft für Ökologie 26, 537550.
  • Kobe, R.K., Pacala, S.W., Silander, J.A. & Canham, C.D. (1995) Juvenile tree survivorship as a component of shade tolerance. Ecological Applications 5, 517532.
  • Körner, C. (2000) Biosphere responses to CO2 enrichment. Ecological Applications 10, 15901619.
  • Körner, C. & Bazzaz, F.A. (1996) Carbon Dioxide, Populations, and Communities. Academic Press, San Diego, CA.
  • Körner, C., Diemer, M., Schäppi, B. & Zimmermann, L. (1996) Response of alpine vegetation to elevated CO2. Terrestrial Ecosystem Response to Elevated CO2, Physiological Ecology Series (eds G.W.Koch & H.A.Mooney), pp. 177196. Academic Press, San Diego, CA.
  • Kubiske, M.E. & Pregitzer, K.S. (1996) Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology 16, 351358.
  • Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. & Bazzaz, F.A. (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10, 689710.
  • Naumburg, E. & Ellsworth, D.S. (2000) Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia 122, 163174.
  • Osborne, C.P., Drake, B.G., LaRoche, J. & Long, S.P. (1997) Does long-term elevation of CO2 concentration increase photosynthesis in forest floor vegetation? Plant Physiology 114, 337344.
  • Putz, F.E. (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 17131724.
  • Schmitz, D.C., Simberloff, D., Hofstetter, R.H., Haller, W. & Sutton, D. (1997) The ecological impact of nonindigenous plants. Strangers in Paradise (eds D.Simberloff, D.C.Schmitz & T.C.Brown), pp. 3961. Island Press, Washington, DC.
  • Schnitzer, S.A. & Bongers, F. (2002) The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17, 223230.
  • Smith, S.D., Huxman, T.E., Zitzer, S.F. et al. (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 7982.
  • Sokal, R.R. & Rohlf, F.J. (1981) Biometry, 2nd edn. W.H. Freeman, New York.
  • Vitousek, P.M. & Walker, L.R. (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59, 247265.
  • Vitousek, P.M., D’Antonio, C.M., Loope, L.L. & Westbrooks, R. (1996) Biological invasions as global environmental change. American Scientist 84, 468478.
  • Walther, G.-R. (1999) Distribution and limits of evergreen broad-leaved (laurophyllous) species in Switzerland. Botanica Helvetica 109, 153167.
  • Walther, G.-R. & Grundmann, A. (2001) Trends of vegetation change in colline and submontane climax forests in Switzerland. Bulletin of the Geobotanical Institute ETH 67, 312.
  • Würth, M.K.R., Winter, K. & Körner, C. (1998) In situ responses to elevated CO2 in tropical forest understorey plants. Functional Ecology 12, 886895.