• comparative approach;
  • light transmission;
  • mechanistic modelling;
  • soil water content;
  • temporal dynamics


  • 1
    Quantifying the amount of resources remaining under plant cover is essential for assessing plant–plant interactions or biological invasions. Although resource levels fluctuate in time, their quantification is performed mainly by instantaneous measurements. We investigated how instantaneous measurements are related to the amount of resources cumulated throughout one growing season, measuring parameters of both light and soil water depletion.
  • 2
    During a growing season, we measured regularly light and soil water levels under the cover of 18 plant species grown as monocultures in a common garden. The temporal dynamics of light and soil water depletion were assessed within each monoculture using mechanistic modelling approaches.
  • 3
    The total amounts of resources remaining over the year under the range of communities were best predicted by instantaneous measurements performed at critical periods, differing among resources. The significance of prediction decreased dramatically for other dates, including the period of peak production, but without changing the ranking of communities according to ability to deplete resources. We therefore recommend that such measurements should be limited to qualitative studies, and that mechanistic modelling for quantitative assessments should be developed.