SEARCH

SEARCH BY CITATION

References

  • Allen, A.S., Andrews, J.A., Finzi, A.C., Matamala, R., Richter, D.D. & Schlesinger, W.H. (2000) Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest. Ecological Applications, 10, 437448.
  • Arnone, J.A., Zaller, J.G., Spehn, E.M., Niklaus, P.A., Wells, C.E. & Körner, C. (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytologist, 147, 7386.
  • BassiriRad, H., Thomas, R.B., Reynolds, J.F. & Strain, B.R. (1996) Differential responses of root uptake kinetics of inline image to enriched atmospheric CO2 concentration in field-grown loblolly pine. Plant, Cell and Environment, 19, 367371.
  • Boehringer Mannheim, S.A. (1989) Starch. Methods of Biochemical Analysis and Food Analysis (ed. S.A. Boeringer Mannheim), pp. 126128. Boehringer Mannheim GmbH, Mannheim, Germany.
  • Brown, A.L.P., Day, F.P., Hungate, B.A., Drake, B.G. & Hinkle, C.R. (2007) Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated CO2. Plant Soil, 292, 219232.
  • Calfapietra, C., Gielen, B., Galema, A.N.J. et al . (2003) Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Tree Physiology, 23, 805814.
  • Ceulemans, R., Janssens, I.A. & Jach, M.E. (1999) Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Annals of Botany, 84, 577590.
  • Clemensson-Lindell, A. (1994) Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: applications and limitations. Plant and Soil, 159, 297300.
  • Crookshanks, M., Taylor, G. & Broadmeadow, M. (1998) Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea, and Pinus sylvestris. New Phytologist, 138, 241250.
  • Curtis, P.S. & Wang, X. (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299313.
  • Eissenstat, D.M., Wells, C.E., Yanai, R.D. & Whitbeck, J.L. (2000) Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 3342.
  • Gill, R.A., Anderson, L.J., Polley, H.W., Johnson, H.B. & Jackson, R.B. (2006) Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Ecology, 87, 4152.
  • Hagedorn, F., Landolt, W., Tarjan, D., Egli, P. & Bucher, J.B. (2002) Elevated CO2 influences nutrient availability in young beech-spruce communities on two soils. Oecologia, 132, 109117.
  • Hagedorn, F., Maurer, S., Bucher, J.B. & Siegwolf, R. (2005) Immobilization, stabilization and re-mobilization of N in forest soils at elevated CO2: a 15N and 13C tracer study. Global Change Biology, 11, 18161827.
  • Hagedorn, F., Spinnler, D., Bundt, M., Blaser, P. & Siegwolf, R. (2003) The input and fate of new C in two forest soils under elevated CO2. Global Change Biology, 9, 862872.
  • Hagedorn, F., Van Hees, P.A.W., Handa, I.T. & Hättenschwiler, S. (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochemical Cycles, in press.
  • Handa, I.T., Körner, C. & Hättenschwiler, S. (2005) A test of the carbon limitation hypothesis through in situ CO2 enrichment and defoliation at the alpine treeline. Ecology, 86, 12881300.
  • Handa, I.T., Körner, C. & Hättenschwiler, S. (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Global Change Biology, 12, 24172430.
  • Hättenschwiler, S. & Körner, C. (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia, 113, 104114.
  • Hättenschwiler, S. & Zumbrunn, T. (2006) Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO2 enrichment. Oecologia, 147, 4752.
  • Hättenschwiler, S., Handa, I.T., Egli, L., Asshoff, R., Ammann, W. & Körner, C. (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytologist, 156, 363375.
  • Hu, S., Firestone, M.K. & Chapin, III F.S. (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Trends in Ecology and Evolution, 14, 433437.
  • Jach, M.E., Laureysens, I. & Ceulemans, R. (2000) Above- and below-ground production of young Scots pine (Pinus sylvestris L.) trees after three years of growth in the field under elevated CO2. Annals of Botany, 85, 789798.
  • Jackson, R.B., Mooney, H.A. & Schulze, E.D. (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, 94, 73627366.
  • Janssens, I.A., Crookshanks, M., Taylor, G. & Ceulemans, R. (1998) Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology, 4, 871878.
  • Johnsen, K., Maier, C. & Kress, L. (2005) Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature. Functional Ecology, 19, 8187.
  • Johnson, M.G., Rygiewicz, P.T., Tingey, D.T. & Phillips, D.L. (2006) Elevated CO2 and temperature have no effect on Douglas-fir fine root dynamics in nitrogen-poor soil. New Phytologist, 170, 345356.
  • Joslin, J.D., Gaudinski, J.B., Torn, M.S., Riley, W.J. & Hanson, P.J. (2006) Fine root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytologist, 172, 523535.
  • Kajimoto, T., Matsuura, Y., Sofronov, M.A., Volokitina, A.V., Mori, S., Osawa, A. & Abaimov, A.P. (1999) Above- and below-ground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiology, 19, 815822.
  • Kasurinen, A., Helmisaari, H.S. & Holopainen, T. (1999) The influence of elevated CO2 and O3 on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years. Global Change Biology, 5, 771780.
  • Keel, S.G., Siegwolf, R. & Körner, C. (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytologist, 172, 319329.
  • Keel, S.G., Siegwolf, R.T.W., Jäggi, M. & Körner, C. (2007) Rapid mixing between old and new C pools in the canopy of mature forest trees. Plant Cell Environment, 30, 963972.
  • King, J.S., Pregitzer, K.S., Zak, W.E. & Schmidt, K. (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia, 146, 318328.
  • Körner, C. (2003) Alpine Plant Life. Springer, Berlin, Germany (2nd edn.).
  • Körner, C. (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393411.
  • Körner, C., Asshoff, R., Bignucolo, O. et al . (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 309, 13601362.
  • Loya, W.M., Pregitzer, K.S., Karberg, N.J. et al . (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature, 425, 705707.
  • Luo, Y., Su, B., Currie, W.S. et al . (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731739.
  • Matamala, R. & Schlesinger, W.H. (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 6, 967979.
  • Matamala, R., Gonzälez-Meter, M.A., Jastrow, J.D., Norby, R.J. & Schlesinger, W.H. (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302, 13851387.
  • Michalzik, B., Tipping, E., Mulder, J. et al . (2003) Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 66, 241264.
  • Moore, D.J.P., Aref, S., Ho, R.M., Pippen, J.S., Hamilton, J.G. & De Lucia, E.H. (2006) Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology, 12, 13671377.
  • Norby, R.J. & Jackson, R.B. (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 312.
  • Norby, R.J., Ledford, J., Reilly, C.D., Miller, N.E. & O’Neill, E.G. (2004) Fine root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Science of the USA, 101, 96899693.
  • Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W. & Ceulmans, R. (1999) Tree responses to rising CO2 in field experiments, implications for the forest future. Plant, Cell and Environment, 22, 683714.
  • Nowak, R.S., Ellsworth, D.S. & Smith, S.D. (2004) Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253280.
  • Olsrud, M., Melillo, J.M., Christensen, T.R., Michelsen, A., Wallander, H. & Olsson, P.A. (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytologist, 162, 459469.
  • Pendall, E., Bridgham, S., Hanson, P.J. et al . (2004) Belowground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162, 311322.
  • Phillips, D.L., Johnson, M.G., Tingey, D.T., Storm, M.J., Ball, J.T. & Johnson, D.W. (2006) CO2 and N-fertilization effects on fine root length, production, and mortality: a 4-year ponderosa pine study. Oecologia, 148, 517525.
  • Pregitzer, K.S. (2002) Fine roots of trees – a new perspective. New Phytologist, 154, 267273.
  • Pregitzer, K.S., Zak, D.R., Maziasz, J., DeForest, J., Curtis, P.S. & Lussenhop, J. (2000) Interactive effects of atmospheric CO2 and soil N availability on the fine roots of Populus tremuloides. Ecological Applications, 10, 1833
  • Press, M.C. (1989) Autotrophy and heterotrophy in root hemiparasites. Trends in Ecology and Evolution, 4, 258263.
  • Pritchard, S.G., Davis, M.A., Mitchell, R.J., Prior, S.A., Boykin, D.L., Rogers, H.H. & Runion, G.B. (2001) Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO2 enrichment. Environmental and Experimental Botany, 46, 5569.
  • R Development Core Team (2004) R: A language and environment for statistical computing, Reference index version 1·9·1. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3, URL http://www.R-project.org
  • Saugier, B., Roy, J. & Mooney, H.A. (2001) Estimations of global terrestrial productivity. Terrestrial Global Productivity (eds J.Roy, B.Saugier & H.A.Mooney), pp. 543557. Academic Press, London, UK.
  • Saxe, H., Ellsworth, D.S. & Heath, J. (1998) Trees and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395436.
  • Schäfer, K.V.R., Oren, R., Ellsworth, D.S., Lai, C.T., Herrick, J.D., Finzi, A.C., Richter, D.D. & Katul, G.G. (2003) Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology, 9, 13781400.
  • Shinano, T., Yamamoto, T., Tawaraya, K., Tadokoro, M., Koike, T. & Osaki, M. (2007) Effects of elevated atmospheric CO2 concentration on the nutrient uptake characteristics of Japanese larch (Larix kaempferi). Tree Physiology, 27, 97104.
  • Siegenthaler, U., Stocker, T.F., Monnin, E. et al . (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science, 310, 13131317.
  • Spinnler, D., Egli, P. & Körner, C. (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees, 16, 423436.
  • Steinmann, K.T.W., Siegwolf, R., Maurer, M. & Körner, C. (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia, 141, 489501.
  • Tennakoon, K.U. & Pate, J.S. (1996) Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia, 105, 369376.
  • Tingey, D.T., McKane, R.B., Olszyk, D.M., Johnson, M.G., Rygiewicz, P.T. & Lee, E.H. (2003) Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 9, 10381050.
  • Tingey, D.T., Phillips, D.L. & Johnson, M.G. (2000) Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytologist, 147, 87103.
  • Treseder, K. (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164, 347355.
  • Von Felten, S., Hättenschwiler, S., Saurer, M. & Siegwolf, R. (2007) Carbon allocation in shoots of alpine treeline conifers in a CO2 enriched environment. Trees, 21, 283294.
  • Wan, S., Norby, R.J., Pregitzer, K.S., Ledford, J. & O’Neill, E.G. (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162, 437446.
  • Zak, D.R., Pregitzer, K.S., King, J.S. & Holmes, W.E. (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist, 147, 201222.