SEARCH

SEARCH BY CITATION

References

  • Achouak, W., Conrod, S., Cohen, V. & Heulin, T. (2004) Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Molecular Plant–Microbe Interactions, 17, 872879.
  • Anderson, J.P.E. & Domsch, K.H. (1978) Physiological method for quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215221.
  • Beck, T., Joergensen, R.G., Kandeler, E., Makeschin, F., Nuss, E., Oberholzer, H.R. & Scheu, S. (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biology and Biochemistry, 29, 10231032.
  • Bonkowski, M. (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist, 162, 617631.
  • Bonkowski, M. & Brandt, F. (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry, 34, 17091715.
  • Chancey, S.T., Wood, D.W., Pierson, E.A. & Pierson, L.S.I. (2002) Survival of gacS/gacA mutants of the biological control bacterium Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Applied and Environmental Microbiology, 68, 33083314.
  • Christensen, S., Bjornlund, L. & Vestergard, M. (2007) Decomposer biomass in the rhizosphere to assess rhizodeposition. Oikos, 116, 6574.
  • Clardy, J., Fischbach, M.A. & Walsh, C.T. (2006) New antibiotics from bacterial natural products. Nature Biotechnology, 24, 15411550.
  • Darbyshire, J.F., Wheatley, R.E., Greaves, M.P. & Inkson, R.H.E. (1974) Rapid micromethod for estimating bacterial and protozoan populations in soil. Revue d’Ecologie et de Biologie du Sol, 11, 465475.
  • Denison, R.F., Bledsoe, C., Kahn, M., O’Gara, F., Simms, E.L. & Thomashow, L.S. (2003) Cooperation in the rhizosphere and the ‘free rider’ problem. Ecology, 84, 838845.
  • Folman, L.B., Postma, J. & Veen, J.A. (2001) Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool. Microbial Ecology, 42, 586597.
  • Haas, D. & Keel, C. (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Reviews of Phytopathology, 41, 117153.
  • Heeb, S. & Haas, D. (2001) Regulatory roles of the gacS/gacA two-component system in plant-associated and other gram-negative bacteria. Molecular Plant–Microbe Interactions, 14, 13511363.
  • Hurek, T., Reinholdhurek, B., Vanmontagu, M. & Kellenberger, E. (1994) Root colonization and systemic spreading of Azoarcus sp strain BH72 in grasses. Journal of Bacteriology, 176, 19131923.
  • Johansen, J.E., Binnerup, S.J., Lejbolle, K.B., Mascher, F., Sorensen, J. & Keel, C. (2002) Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. Journal of Applied Microbiology, 93, 10651074.
  • Jousset, A., Lara, E., Wall, L.G. & Valverde, C. (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape predation. Applied and Environmental Microbiology, 72, 70837090.
  • Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. & Defago, G. (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant–Microbe Interactions, 5, 413.
  • Kreuzer, K., Adamczyk, J., Iijima, M., Wagner, M., Scheu, S. & Bonkowski, M. (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza Sativa L.). Soil Biology and Biochemistry, 38, 16651672.
  • Martinez-Granero, F., Capdevila, S., Sanchez-Contreras, M., Martin, M. & Rivilla, R. (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology, 151, 975983.
  • Matz, C. & Kjelleberg, S. (2005) Off the hook – how bacteria survive protozoan grazing. Trends in Microbiology, 13, 302307.
  • Matz, C., Bergfeld, T., Rice, S.A. & Kjelleberg, S. (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environmental Microbiology, 6, 218226.
  • Natsch, A., Keel, C., Pfirter, H.A., Haas, D. & Defago, G. (1994) Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Applied and Environmental Microbiology, 60, 25532560.
  • Normander, B., Hendriksen, N.B. & Nybroe, O. (1999) Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Applied and Environmental Microbiology, 65, 46464651.
  • Page, F.C. (1988) A New Key to Freshwater and Soil Gymnaboeae. Freshwater Biological Association, Ambleside.
  • Pernthaler, J. (2005) Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology, 3, 537546.
  • Queck, S.Y., Weitere, M., Moreno, A.M., Rice, S.A. & Kjelleberg, S. (2006) The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. Environmental Microbiology, 8, 10171025.
  • Rønn, R., McCaig, A., Griffiths, B. & Prosser, J. (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Applied and Environmental Microbiology, 68, 60946105.
  • Scheu, S. (1992) Automated measurement of the respiratory response of soil microcompartments – active microbial biomass in earthworm feces. Soil Biology and Biochemistry, 24, 11131118.
  • Schmidt-Eisenlohr, H., Gast, A. & Baron, C. (2003) Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Applied and Environmental Microbiology, 69, 18171826.
  • Valverde, C., Heeb, S., Keel, C. & Haas, D. (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Molecular Microbiology, 50, 13611379.
  • Van Der Putten, W.H., Mortimer, S.R., Hedlund, K., Van Dijk, C., Brown, V.K., Leps, J., Rodriguez-Barrueco, C., Roy, J., Len, T.A.D., Gormsen, D., Korthals, G.W., Lavorel, S., Regina, I.S. & Smilauer, P. (2000) Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach. Oecologia, 124, 9199.
  • Weller, D.M. (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97, 250256.
  • Winding, A., Binnerup, S.J. & Pritchard, H. (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiology Ecology, 47, 129141.
  • Zuber, S., Carruthers, F., Keel, C., Mattart, A., Blumer, C., Pessi, G., Gigot-Bonnefoy, C., Schnider-Keel, U., Heeb, S., Reimmann, C. & Haas, D. (2003) GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Molecular Plant–Microbe Interactions, 16, 634644.