SEARCH

SEARCH BY CITATION

References

  • Angilletta, M.A., Wilson, R.S., Navas, C.A. & James, R.S. (2003) Tradeoffs and the evolution of thermal reaction norms. Trends in Ecology and Evolution, 18, 234240.
  • Arrhenius, S. (1889) Über die Reaktionsgeschwindigkeit bei Inversion von Rohrzucker durch Säuren. Zeitschrift fur Phusikalische Chemie, 4, 226248.
  • Baker, R., Cannon, R., Bartlett, P. & Barker, I. (2005) Novel strategies for assessing and managing the risks posed by alien species to global crop production and biodiversity. Annals of Applied Biology, 146, 177191.
  • Bale, J.S. (2002) Insects at low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 357, 849862.
  • Birkemoe, T. & Leinaas, H.P. (2000) The effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Functional Ecology, 14, 693700.
  • Blöchl, E., Rachel, R., Burgraf, S., Hafenbradl, D., Jannasch, H.W. & Stetter, K.O. (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles, 1, 1421.
  • Bodenheimer (1927) cited in Chapman, R.N. (1931) Animal Ecology. McGraw Hill, New York.
  • Bonhomme, R. (2000) Bases and limits to using ‘degree.days’ units. European Journal of Agronomy, 13, 110.
  • Briére, J.F., Pracros, P., LeRoux, A.Y. & Pierre, J.S. (1999) A novel model of temperature dependent development for arthropods. Environmental Entomology, 27, 94101.
  • Charnov, E.L. & Gillooly, J.F. (2003) Thermal time: body size, food quality and the 10 °C rule. Evolutionary Ecology Research, 5, 4351.
  • Chick, H. & Martin, C.J. (1910) On the ‘heat coagulation’ of proteins. Journal of Physiology, 40, 404430.
  • Desdevises, Y, Legendre, P., Azonzi, L. & Morand, S. (2003) Quantifying phylogenetically structured environmental variatin. Evolution, 57, 26472652.
  • Diniz-Filho, J.A.F., De Sant’ana, C.E.R. & Bini, L.M. (1998) An eigenvector method for estimating phylogenetic inertia. Evolution, 52, 12471262.
  • Dixon, A.F.G. (1998) Aphid Ecology: An Optimization Approach. Chapman & Hall, London.
  • Dixon, A.F.G. (2000) Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge.
  • Dixon, A.F.G. (2003) Climate change and phenological asynchrony. Ecological Entomology, 28, 380381.
  • Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist, 125, 115.
  • Frazier, M.R., Huey, R.B. & Berrigan, D. (2006) Thermodynamics constrains the evolution of insect population growth rates: ‘Warmer is Better’. American Naturalist, 168, 512520
  • Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M. & Brown, J.H. (2002) Effects of size and temperature on developmental time. Nature, 417, 7073.
  • Harcourt, D.G. & Yee, J.M. (1982) Polynomial algorithm for predicting the duration of insect life stages. Environmental Entomology, 11, 581584.
  • Harrington, R. & Stork, N.E. (eds) (1995) Insects in a Changing Environment. Academic Press, London.
  • Harvey, P.H. & Pagel, M.D. (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.
  • Hatherly, I.S., Hart, A.J., Tullett, A.G. & Bale, J.S. (2005) Use of thermal data as a screen for the establishment potential of non-native biological control agents in the UK. BioControl, 50, 687698.
  • Hodkinson, I.D. (2005) Adaptations of invertebrates to terrestrial arctic environments. Transactions of the Royal Norwegian Society of Science and Letters, 2, 145.
  • Honek, A. (1996a) Geographical variation in thermal requirements for insect development. European Journal of Entomology, 93, 303312.
  • Honek, A. (1996b) The relationship between thermal constants for insect development: a verification. Acta Societatis Zoologicae Bohemicae, 60, 115152.
  • Honek, A. (1999) Constraints on thermal requirements for insect development. Entomological Science 2, 615621.
  • Honek, A. & Kocourek, F. (1990) Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik und Ökologie der Tiere, 117, 401439.
  • Huey, R.B. & Hertz, P.E. (1984) Is a jack-of all-temperatures a master of none? Evolution, 38, 441444.
  • Huey, R.B. & Kingsolver, J.G. (1989) Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology and Evolution, 4, 131135.
  • Huey, R.B. & Kingsolver, J.G. (1993) Evolution of resistance to high temperatures in ectotherms. American Naturalist, 142, 2146.
  • Jarošík, V. & Honek, A. (2007) Sexual differences in insect development time in relation to sexual size dimorphism. Sex, Size and Gender Roles (eds D.Fairbairn, W.Blanckenhorn & T.Szekely), pp. 205211. Oxford University Press, Oxford.
  • Jarošík, V., Honek, A. & Dixon, A.F.G. (2002) Developmental rate isomorphy in insects and mites. American Naturalist, 160, 497510.
  • Jarošík, V., Kratochvíl, L., Honek, A. & Dixon, A.F.G. (2004) A general rule for the dependence of developmental rate on temperature in ectotherms. Proceedings of the Royal Society London B (Supplementum), 271, S219S221.
  • Kiritani, K. (2006) Predicting impacts of global warming on population dynamics and distribution of arhropods in Japan. Population Ecology, 48, 512.
  • Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J. & Economou, L.P. (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environmental Entomology, 33, 111.
  • Lactin, D.J., Holliday, N.J., Johnson, D.L. & Craigen, R. (1995) Improved rate model of temperature-dependent development by arthropods. Environmental Entomology, 24, 6875.
  • Logan, J.A., Wollkind, D.J., Hoyt, S.C. & Tanigoshi, L.K. (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5, 11331140.
  • Moore, J.A. (1942) The role of temperature in speciation of frogs. Biological Symposia, 6, 189213.
  • Moore, J.A. (1949) Geographic variation in adaptive characters in Rana pipiens Schreber. Evolution, 3, 124
  • Prinzing, A., Durka, W., Klotz, S. & Brandl, R. (2002) Which species become aliens? Evolutionary and Ecological Research, 4, 385405.
  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  • Réaumur, R.A.F. de (1735) Observation du thérmomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelquesunes de nos isles de l’Amérique. Mémoires de l’Académie Royale des Sciences de Paris, 1735, 545576.
  • Réaumur, R.A.F. de (1736) Mémoires pour server à l’histoire des insects. De l’Imprimerie Royale, Paris.
  • Rogers, L.E., Hinds, W.T. & Buschbom, R.L. (1976) A general weight vs. length relationship for Insects. Annals of the Entomological Society of America, 69, 387389.
  • Sæther, O.A. (2000) Phylogeny of Culicomorpha (Diptera). Systematic Entomology, 25, 223234.
  • Schoolfield, R.M., Sharpe, P.J.H. & Magnuson, C.E. (1981) Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88, 719731.
  • Sharpe, P.J.H. & De Michele, W. (1977) Reaction kinetics of poikilotherm development. Journal of Theoretical Biology, 64, 649670.
  • Simberloff, D., Parker, I.M. & Windle, P.N. (2005) Introduced species policy, management and future research needs. Frontiers in Ecology and the Environment, 3, 1220.
  • Sokal, R.R. & Rohlf, F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research. W. H. Freeman & Co., New York.
  • Stinner, R.E., Gutierrez, A.P. & Butler, G.D. (1974) An algorithm for temperature-dependent growth rate simulation. Canadian Entomologist, 106, 519524.
  • Trudgill, D.L., Honek, A. & Van Straalen, N.M. (2005) Thermal time – concepts and utility. Annals of Applied Biology, 146, 114.
  • Van Der Have, T.M. (2002) A proximate model for thermal tolerance in ectotherms, Oikos, 98, 141155.
  • Van Der Have, T.M. & De Jong, G. (1996) Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology, 185, 329340.
  • Van Rijn, C.J., Mollema, C. & Steenhuis-Broers, G.M. (1995) Comparative life-history studies of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) on cucumber. Bulletin of Entomological Research, 85, 285297.
  • Van Straalen, N.M. (1994) Adaptive significance of temperature responses in Collembola. Acta Zoologica Fennica, 195, 135142.
  • Van't Hoff, J.H. (1894) Études de Dynamique Chemique. Frederik Muller & Co., Amsterdam.
  • Wagner, T.L. (1995) Temperature-dependent development, mortality, and adult size of sweetpotato whitefly biotype B (Homoptera: Aleyrodidae) on cotton. Environmental Entomology 24, 11791188.
  • Wagner, T.L., Olson, R.L. & Willers, J.L. (1991) Modeling arthropod development time. Journal of Agricultural Entomology, 8, 251270.
  • Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M. & Coulson, R.N. (1984) Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America, 77, 208225.
  • Yamamura, K. & Kiritani, K. (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperature zones. Applied Entomology and Zoology, 33, 289298.
  • Yeates, D.K. & Wiegmann, B.M. (1999) Congruence and controversy: toward a higher-level phylogeny of Diptera. Annual Review of Entomology, 44, 397428.
  • Yeates, D.K. (2002) Relationships of the lower Brachycera (Diptera): a quantitative synthesis of morphological characters. Zoologica Scripta, 31, 105121.