SEARCH

SEARCH BY CITATION

References

  • Abouheif, E. (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research, 1, 895909.
  • Addo-Bediako, A., Chown, S.L. & Gaston, K.J. (2000) Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London Series B – Biological Sciences, 267, 739745.
  • Bahrndorff, S., Holmstrup, M., Petersen, H. & Loeschcke, V. (2006) Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. Journal of Insect Physiology, 52, 951959.
  • Bahrndorff, S., Petersen, S.O., Loeschcke, V., Overgaard, J. & Holmstrup, M. (2007) Differences in cold and drought tolerance of high arctic and subarctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology, 55, 323.
  • Bale, J.S. (1993) Classes of insect cold-hardiness. Functional Ecology, 7, 751753.
  • Beier, C., Emmett, B., Gundersen, P., Tietema, A., Penuelas, J., Estiarte, M., Gordon, C., Gorissen, A., Llorens, L., Roda, F. & Williams, D. (2004) Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems, 7, 583597.
  • Block, W. (2003) Water or ice? – the challenge for invertebrate cold survival. Science Progress, 86, 77101.
  • Chen, C.P. & Walker, V.K. (1993) Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecological Entomology, 18, 184190.
  • Chen, C.P., Denlinger, D.L. & Lee, R.E. (1987) Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology, 60, 297304.
  • Chen, C.P., Lee, R.E. & Denlinger, D.L. (1990) A comparison of the responses of tropical and temperate flies (Diptera, Sarcophagidae) to cold and heat-stress. Journal of Comparative Physiology B – Biochemical Systemic and Environmental Physiology, 160, 543547.
  • Chown, S.L. & Terblanche, J.S. (2007) Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50152.
  • Chown, S.L., Addo-Bediako, A. & Gaston, K.J. (2002) Physiological variation in insects: large-scale patterns and their implications. Comparative Biochemistry and Physiology B – Biochemistry and Molecular Biology, 131, 587602.
  • Coulson, S.J., Hodkinson, I.D., Block, W., Webb, N.R. & Worland, M.R. (1995) Low summer temperatures – a potential mortality factor for high arctic soil microarthropods. Journal of Insect Physiology, 41, 783792.
  • Czajka, M.C. & Lee, R.E. (1988) Cold shock and rapid cold hardening in Drosophila melanogaster. Cryobiology, 25, 546.
  • Czajka, M.C. & Lee, R.E. (1990) A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. Journal of Experimental Biology, 148, 245254.
  • Deere, J.A. & Chown, S.L. (2006) Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. American Naturalist, 168, 630644.
  • Donnelly, S.M. & Kramer, A. (1999) Testing for multiple species in fossil samples: an evaluation and comparison of tests for equal relative variation. American Journal of Physical Anthropology, 108, 507529.
  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294299.
  • Garcia, L.V. (2003) Controlling the false discovery rate in ecological research. Trends in Ecology and Evolution, 18, 553554.
  • Gaston, K.J., Chown, S.L. & Evans, K.L. (2008) Ecogeographical rules: elements of a synthesis. Journal of Biogeography, 35, 483500.
  • Gittleman, J.L. & Kot, M. (1990) Adaptation – statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39, 227241.
  • Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) past: Palaeontological Statistics software package for education and data analysis. Palaeontologica Electronica, 4, 9.
  • Harshman, L.G. & Hoffmann, A.A. (2000) Laboratory selection experiments using Drosophila: what do they really tell us? Trends in Ecology and Evolution, 15, 3236.
  • Hawes, T.C., Couldridge, C.E., Bale, J.S., Worland, M.R. & Convey, P. (2006) Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schaffer). Ecological Entomology, 31, 450459.
  • Hoffmann, A.A., Sørensen, J.G. & Loeschcke, V. (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28, 175216.
  • Hogg, I.D. & Hebert, P.D.N. (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology – Revue Canadienne de Zoologie, 82, 749754.
  • Holmstrup, M., Bayley, M. & Ramløv, H. (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 99, 57165720.
  • Joosse, E.N.G. & Verhoef, H.A. (1987) Developments in ecophysiological research on soil invertebrates. Advances in Ecological Research, 16, 175248.
  • Joplin, K.H., Yocum, G.D. & Denlinger, D.L. (1990) Cold shock elicits expression of heat-shock proteins in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 36, 825834.
  • Kærsgaard, C.W., Holmstrup, M., Malte, H. & Bayley, M. (2004) The importance of cuticular permeability, osmolyte production and body size for the desiccation resistance of nine species of Collembola. Journal of Insect Physiology, 50, 515.
  • Kelty, J.D. & Lee, R.E. (1999) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. Journal of Insect Physiology, 45, 719726.
  • Kelty, J.D. & Lee, R.E. (2001) Rapid cold-hardening of Drosophila melanogaster (Diptera : Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology, 204, 16591666.
  • Kostal, V., Vambera, J. & Bastl, J. (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology, 207, 15091521.
  • Lee, R.E., Chen, C.P. & Denlinger, D.L. (1987a) A rapid cold-hardening process in insects. Science, 238, 14151417.
  • Lee, R.E., Chen, C.P. & Denlinger, D.L. (1987b) Cold shock and rapid cold-hardening in nonoverwintering insects. Cryobiology, 24, 569.
  • Lee, R.E., Damodaran, K., Yi, S.X. & Lorigan, G.A. (2006) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology, 52, 459463.
  • Martins, E.P. & Hansen, T.F. (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist, 149, 646667.
  • Michaud, M.R. & Denlinger, D.L. (2006) Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 52, 10731082.
  • Overgaard, J., Malmendal, A., Sorensen, J.G., Bundy, J.G., Loeschcke, V., Nielsen, N.C. & Holmstrup, M. (2007) Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53, 12181232.
  • Overgaard, J., Sørensen, J.G., Petersen, S.O., Loeschcke, V. & Holmstrup, M. (2005) Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology, 51, 11731182.
  • Powell, S.J. & Bale, J.S. (2004) Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera : Aphididae). Journal of Insect Physiology, 50, 277284.
  • Reeve, J. & Abouheif, E. Phylogenetic independence. (Version 1.1. [l .I]). (1999) Department of Ecology and Evolution, SUNY at Stony Brook.
  • Shreve, S.M., Kelty, J.D. & Lee, R.E. (2004) Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. Journal of Experimental Biology, 207, 17971802.
  • Sinclair, B.J. (1999) Insect cold tolerance: how many kinds of frozen? European Journal of Entomology, 96, 157164.
  • Sinclair, B.J., Klok, C.J., Scott, M.B., Terblanche, J.S. & Chown, S.L. (2003a) Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology, 49, 10491061.
  • Sinclair, B.J., Vernon, P., Klok, C.J. & Chown, S.L. (2003b) Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution, 18, 257262.
  • Slabber, S., Worland, M.R., Leinaas, H.P. & Chown, S.L. (2007) Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: Indigenous and invasive species. Journal of Insect Physiology, 53, 113125.
  • Sømme, L. (1982) Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology A – Physiology, 73, 519543.
  • Stevens, G.C. (1989) The latitudinal gradient in geographical range – how so many species coexist in the tropics. American Naturalist, 133, 240256.
  • Stevens, G.C. (1992) The elevational gradient in altitudinal range – an extension of rapoport latitudinal rule to altitude. American Naturalist, 140, 893911.
  • Tang, M., Waring, A.J. & Hong, M. (2007) Trehalose-protected lipid membranes for determining membrane protein structure and insertion. Journal of Magnetic Resonance 184, 222227.
  • Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C. & Chown, S.L. (2007) Critical thermal limits depend on methodological context. Proceedings of the Royal Society B – Biological Sciences, 274, 29352942.
  • Willmer, P.G. (1982) Microclimate and the environmental physiology of insects. Advances in Insect Physiology, 16, 157.
  • Worland, M.R. & Convey, P. (2001) Rapid cold hardening in Antarctic microarthropods. Functional Ecology, 15, 515524.
  • Worland, M.R., Leinaas, H.P. & Chown, S.L. (2006) Supercooling point frequency distributions in Collembola are affected by moulting. Functional Ecology, 20, 323329.