SEARCH

SEARCH BY CITATION

References

  • Adolph, E.F. (1931) The Regulation of Size as Illustrated in Unicellular Organisms. Thomas, C.C., Illinois.
  • Angert, E.R. (2005) Alternatives to binary fission in bacteria. Nature Reviews Microbiology, 3, 214224.
  • Angilletta, M.J., Steury, T.D. & Sears, M.W. (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life history puzzle. Integrative and Comparative Biology, 44, 498509.
  • Atkinson, D. (1994) Temperature and organism size – a biological law for ectotherms. Advances in Ecological Research, 25, 158.
  • Atkinson, D., Ciotti, B.J. & Montagnes, D.J.S. (2003) Protists decrease in size linearly with temperature: ca. 2.5% degrees C−1. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 26052611.
  • Atkinson, D., Morley, S.A. & Hughes, R.N. (2006) From cells to colonies: at what levels of body organization does the ‘temperature-size rule’ apply? Evolution & Development, 8, 202214.
  • Atkinson, D., Morley, S.A., Weetman, D. & Hughes, R.N. (2001) Offspring size responses to maternal environment in ectotherms. Environment and Animal Development: Genes, Life Histories and Plasticity (eds D. Atkinson & M. Thorndyke). pp. 269286, BIOS Scientific, Oxford.
  • Berven, K.A. & Gill, D.E. (1983) Interpreting geographic variation in life-history traits. American Zoologist, 23, 8597.
  • Blanckenhorn, W.U. (2000) Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria. Evolutionary Ecology, 14, 627643.
  • Campbell, R.G., Wagner, M.M., Teegarden, G.J., Boudreau, C.A. & Durbin, E.G. (2001) Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Marine Ecology-Progress Series, 221, 161183.
  • Daufresne, M., Lengfellner, K. & Sommer, U. (2009) Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 1278812793.
  • Davidowitz, G. & Nijhout, H.F. (2004) The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integrative and Comparative Biology, 44, 443449.
  • De Jong, G. (2010) A biophysical interpretation of temperature-dependent body size in Drosophila aldrichi and D. buzzatii. Journal of Thermal Biology, 35, 8599.
  • Ernsting, G. & Isaaks, J.A. (1997) Effects of temperature and season on egg size, hatchling size and adult size in Notiophilus biguttatus. Ecological Entomology, 22, 3240.
  • Escribano, R. & Mclaren, I.A. (1992) Testing hypotheses of exponential growth and size-dependent molting rate in two copepod species. Marine Biology, 114, 3139.
  • Fischer, K., Bauerfeind, S.S. & Fiedler, K. (2006) Temperature-mediated plasticity in egg and body size in egg size-selected lines of a butterfly. Journal of Thermal Biology, 31, 347354.
  • Fischer, K., Zwaan, B.J. & Brakefield, P.M. (2004) Genetic and environmental sources of egg size variation in the butterfly Bicyclus anynana. Heredity, 92, 163169.
  • Fischer, K., Eenhoorn, E., Bot, A.N.M., Brakefield, P.M. & Zwaan, B.J. (2003) Cooler butterflies lay larger eggs: developmental plasticity versus acclimation. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 20512056.
  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.
  • Karan, D., Morin, J.P., Moreteau, B. & David, J.R. (1998) Body size and developmental temperature in Drosophila melanogaster: analysis of body weight reaction norm. Journal of Thermal Biology, 23, 301309.
  • Karl, I. & Fischer, K. (2008) Why get big in the cold? towards a solution to a life-history puzzle. Oecologia, 155, 215225.
  • Kindlmann, P., Dixon, A.F.G. & Dostalkova, I. (2001) Role of ageing and temperature in shaping reaction norms and fecundity functions in insects. Journal of Evolutionary Biology, 14, 835840.
  • Kingsolver, J.G. & Huey, R.B. (2008) Size, temperature, and fitness: three rules. Evolutionary Ecology Research, 10, 251268.
  • Kiørboe, T. & Hirst, A.G. (2008) Optimal development time in pelagic copepods. Marine Ecology-Progress Series, 367, 1522.
  • Kozłowski, J., Czarnoleski, M. & Danko, M. (2004) Can optimal resource allocation models explain why ectotherms grow larger in cold? Integrative and Comparative Biology, 44, 480493.
  • Leandro, S.M., Tiselius, P. & Queiroga, H. (2006) Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions. Marine Biology, 150, 121129.
  • Montagnes, D.J.S. & Franklin, D.J. (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography, 46, 20082018.
  • Perrin, N. (1995) About Berrigan and Charnov life-history puzzle. Oikos, 73, 137139.
  • Reynolds, C.S. (2006) Ecology of Phytoplankton. University of Cambridge Press, New York.
  • Sevenster, J.G. (1995) Equations or organisms – a comment. Oikos, 73, 405407.
  • Sibly, R.M. & Atkinson, D. (1994) How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 8, 486493.
  • Sleigh, M.A. (1991) Protozoa and Other Protists. Univeristy of Cambridge Press, Cambridge.
  • Van Der Have, T.M. & De Jong, G. (1996) Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology, 183, 329340.
  • Von Bertalanffy, L. (1957) Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32, 217231.
  • Walters, R.J. & Hassall, M. (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? American Naturalist, 167, 510523.