SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723.
  • Anger, K. (1984) Development and growth in larval and juvenile Hyas coarctatus (Decapoda, Majidae) reared in the laboratory. Marine Ecology-Progress Series, 19, 115123.
  • Angilletta, M.J., Steury, T.D. & Sears, M.W. (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life history puzzle. Integrative and Comparative Biology, 44, 498509.
  • Arendt, J.D. (2011) Size-fecundity relationships, growth trajectories, and the temperature-size rule for ectotherms. Evolution, 65, 4351.
  • Atkinson, D. (1994) Temperature and organism size – A biological law for ectotherms. Advances in Ecological Research, 25, 158.
  • Atkinson, D., Ciotti, B.J. & Montagnes, D.J.S. (2003) Protists decrease in size linearly with temperature: ca. 2.5% degrees C−1. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 26052611.
  • Blanckenhorn, W.U. (2000) Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria. Evolutionary Ecology, 14, 627643.
  • Browne, R.A., Sorgeloos, P. & Trotman, C.N.A. (1991) Artemia Biology. CRC Press, Florida.
  • Burnham, K.P. & Anderson, D.M. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.
  • Campbell, R.G., Wagner, M.M., Teegarden, G.J., Boudreau, C.A. & Durbin, E.G. (2001) Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Marine Ecology Progress Series, 221, 161183.
  • Cornell, H.V. & Hawkins, B.A. (1995) Survival patterns and mortality sources of herbivorous insects: some demographic trends. The American Naturalist, 145, 563593.
  • Crill, W.D., Huey, R.B. & Gilchrist, G.W. (1996) Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution, 50, 12051218.
  • David, J.R., Gibert, P., Gravot, E., Petavy, G., Morin, J.P., Karan, D. & Moreteau, B. (1997) Phenotypic plasticity and developmental temperature in Drosophila: analysis and significance of reaction norms of morphometrical traits. Journal of Thermal Biology, 22, 441451.
  • Davidowitz, G., D’amico, L.J. & Nijhout, H.F. (2004) The effects of environmental variation on a mechanism that controls insect body size. Evolutionary Ecology Research, 6, 4962.
  • Davidowitz, G. & Nijhout, H.F. (2004) The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integrative and Comparative Biology, 44, 443449.
  • Dawirs, R.R., Puschel, C. & Schorn, F. (1986) Temperature and growth in Carcinus maenas l (Decapoda, Portunidae) larvae reared in the laboratory from hatching through metamorphosis. Journal of Experimental Marine Biology and Ecology, 100, 4774.
  • De Jong, G. (2010) A biophysical interpretation of temperature-dependent body size in Drosophila aldrichi and D. buzzatii. Journal of Thermal Biology, 35, 8599.
  • Diamond, S.E. & Kingsolver, J.G. (2010) Environmental dependence of thermal reaction norms: host plant quality can reverse the temperature size rule. The American Naturalist, 175, 110.
  • Ernsting, G. & Isaaks, J.A. (1997) Effects of temperature and season on egg size, hatchling size and adult size in Notiophilus biguttatus. Ecological Entomology, 22, 3240.
  • Fischer, K., Brakefield, P.M. & Zwaan, B.J. (2003) Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology, 84, 31383147.
  • Fischer, K., Eenhoorn, E., Bot, A.N.M., Brakefield, P.M. & Zwaan, B.J. (2003) Cooler butterflies lay larger eggs: developmental plasticity versus acclimation. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 20512056.
  • Forster, J., Hirst, A.G. & Atkinson, D. (2011a) How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing Functional Ecology, 25, 10241031.
  • Forster, J., Hirst, A.G. & Woodward, G. (2011b) Growth and development rates have different thermal responses. The American Naturalist, 178, 668678.
  • Gulbrandsen, J. & Johnsen, G.H. (1990) Temperature dependent development of parthenogenetic embryos in Daphnia pulex de Geer. Journal of Plankton Research, 12, 443453.
  • Hansen, B.W., Drillet, G., Kozmer, A., Madsen, K.V., Pedersen, M.F. & Sorensen, T.F. (2011) Temperature effects on copepod egg hatching: does acclimatization matter? Journal of Plankton Research, 32, 305315.
  • Hart, R.C. (1990) Copepod postembryonic durations – pattern, conformity, and predictability – the realities of isochronal and equiproportional development, and trends in the copepodid-naupliar duration ratio. Hydrobiologia, 206, 175206.
  • Hassall, M., Walters, R.J., Telfer, M. & Hassall, M.R.J. (2006) Why does a grasshopper have fewer, larger offspring at its range limits? Journal of Evolutionary Biology, 19, 267276.
  • Hirst, A.G. & Kiørboe, T. (2002) Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology-Progress Series, 230, 195209.
  • Johnston, I.A. & Dunn, J. (1987) Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Symposia of the Society for Experimental Biology, 41, 6793.
  • Karan, D., Morin, J.P., Moreteau, B. & David, J.R. (1998) Body size and developmental temperature in Drosophila melanogaster: analysis of body weight reaction norm. Journal of Thermal Biology, 23, 301309.
  • Kimoto, K., Uye, S. & Onbe, T. (1986) Growth characteristics of a brackish-water calanoid copepod Sinocalanus tenellus in relation to temperature and salinity. Bulletin of Plankton Society of Japan, 33, 4357.
  • Kingsolver, J.G. & Huey, R.B. (2008) Size, temperature, and fitness: three rules. Evolutionary Ecology Research, 10, 251268.
  • Kozłowski, J., Czarnoleski, M. & Danko, M. (2004) Can optimal resource allocation models explain why ectotherms grow larger in cold? Integrative and Comparative Biology, 44, 480493.
  • Kunisch, M. & Anger, K. (1984) Variation in development and growth rates of larval and juvenile spider crabs Hyas araneus reared in the laboratory. Marine Ecology-Progress Series, 15, 293301.
  • Leandro, S.M., Tiselius, P. & Queiroga, H. (2006) Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions. Marine Biology, 150, 121129.
  • Lee, H.W., Ban, S., Ikeda, T. & Matsuishi, T. (2003) Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. Journal of Plankton Research, 25, 261271.
  • Li, C.L., Luo, X.X., Huang, X.H. & Gu, B.H. (2009) Influences of temperature on development and survival, reproduction and growth of a calanoid copepod (Pseudodiaptomus dubia). The Scientific World Journal, 9, 866879.
  • McConaugha, J.R. (1992) Decapod larvae: dispersal, mortality, and ecology. A working hypothesis. American Zoologist, 32, 512523.
  • Nijhout, H.F., Davidowitz, G. & Roff, D.A. (2006) A quantitative analysis of the mechanism that controls body size in Manduca sexta. Journal of Biology, 5, 16.
  • O’connor, M.I., Bruno, J.F., Gaines, S.D., Halpern, B.S., Lester, S.E., Kinlan, B.P. & Weiss, J.M. (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. PNAS, 104, 12661271.
  • Partridge, L., Barrie, B., Fowler, K. & French, V. (1994) Evolution and development of body-size and cell-size in Drosophila melanogaster in response to temperature. Evolution, 48, 12691276.
  • Perrin, N. (1995) About Berrigan and Charnov life-history puzzle. Oikos, 73, 137139.
  • Petavy, G.B., Moreteau, B., Gibert, P., Morin, J.P. & David, J.R. (2001) Phenotypic plasticity of body size in Drosophila: effects of a daily periodicity of growth temperature in two sibling species. Physiological Entomology, 26, 351361.
  • Potter, K.A., Davidowitz, G. & Woods, H.A. (2011) Cross-stage consequences of egg temperature in the insect Manduca sexta. Functional Ecology, 25, 548556.
  • Reeve, M.R. (1963) Growth efficiency in Artemia under laboratory conditions. Biological Bulletin, 125, 133145.
  • Sibly, R.M. & Atkinson, D. (1994) How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 8, 486493.
  • Smith-Gill, S.J. & Berven, K.A. (1979) Predicting amphibian metamorphosis. American Naturalist, 113, 563585.
  • Steigenga, M.J. & Fischer, K. (2007) Within- and between-generation effects of temperature on life-history traits in a butterfly. Journal of Thermal Biology, 32, 396405.
  • Stillwell, R.C. & Fox, C.W. (2005) Complex patterns of phenotypic plasticity: interactive effects of temperature during rearing and oviposition. Ecology, 86, 924934.
  • Strong, K.W. & Daborn, G.R. (1980) The influence of temperature on energy budget variables, body size, and seasonal occurrence of the isopod Idotea baltica (Pallas). Canadian Journal of Zoology, 58, 19921996.
  • Uye, S. (1988) Temperature-dependent development and growth of Calanus sinicus (Copepoda, Calanoida) in the laboratory. Hydrobiologia, 167, 285293.
  • Uye, S. (1991) Temperature-dependent development and growth of the planktonic copepod Paracalanus sp. In the laboratory. Bulletin of Plankton Society of Japan Special Volume, 627636.
  • Van Der Have, T.M. & De Jong, G. (1996) Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology, 183, 329340.
  • Van Voorhies, W.A. (1996) Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution, 50, 12591264.
  • Von Bertalanffy, L. (1957) Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32, 217231.
  • Walters, R.J. & Hassall, M. (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? American Naturalist, 167, 510523.
  • Weisz, P.B. (1946) The space-time pattern of segment formation in Artemia salina. Biological Bulletin, 91, 119140.