SEARCH

SEARCH BY CITATION

References

  • Adolph, S.C. (1990) Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology, 71, 315327.
  • Álvarez, H.J. (1992) Thermal Characteristics of Sphaerodactylus Species in Puerto Rico and Their Implications for the Distribution of Species in Puerto Rico. PhD Dissertation, University of Puerto Rico, Río Piedras.
  • Angilletta, M.J. (2001) Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology, 82, 30443056.
  • Angilletta, M.J. (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford.
  • Bennett, A.F. (1980) The thermal dependence of lizard behaviour. Animal Behaviour, 28, 752762.
  • Blouin-Demers, G. & Weatherhead, P.J. (2001) Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology, 82, 30253043.
  • Bogert, C.M. (1949) Thermoregulation in reptiles, a factor in evolution. Evolution, 3, 195211.
  • Bonebrake, T.C. & Mastrandrea, M.D. (2010) Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. Proceedings of the National Academy of Sciences USA, 107, 1258112586.
  • Bradshaw, W.E. & Holzapfel, C.M. (2008) Genetic responses to rapid climate change: it’s seasonal timing that matters. Molecular Ecology, 17, 157166.
  • Brandeis, T.J., Helmer, E.H., Marcano-Vega, H. & Lugo, A.E. (2009) Climate shapes the novel plant communities that form after deforestation in Puerto Rico and the U.S. Virgin Islands. Forest Ecology and Management, 258, 17041718.
  • Buckley, L.B. (2008) Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. The American Naturalist, 171, E1E19.
  • Buckley, L.B., Urban, M.C., Angilletta, M.J., Crozier, L.G., Rissler, L.J. & Sears, M.W. (2010) Can mechanism inform species’ distribution models? Ecology Letters, 13, 10411054.
  • Chown, S.L. & Terblanche, J.S. (2007) Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50152.
  • Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänan, J., Rinke, A., Sarr, A. & Whetton, P. (2007) Regional climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Quin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller), pp. 847940. Cambridge University Press, Cambridge.
  • Christian, K.A. & Weavers, B.W. (1996) Thermoregulation of monitor lizards in Australia: an evaluation of methods in thermal biology. Ecological Monographs, 66, 139157.
  • Clusella-Trullas, S., Blackburn, T.M. & Chown, S.L. (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. The American Naturalist, 177, 738751.
  • Crowley, S.R. (1985) Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia, 66, 219225.
  • Daly, C., Helmer, E.H. & Quiñones, M. (2003) Mapping the climate of Puerto Rico, Viequez and Culebra. International Journal of Climatology, 23, 13591381.
  • Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Martin, P.R. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA, 105, 66686672.
  • Dillon, M.E., Wang, G. & Huey, R.B. (2010) Global metabolic impacts of recent climate warming. Nature, 467, 704707.
  • Duarte, H., Tejedo, M., Katzenberger, M., Marangoni, F., Baldo, D., Beltrán, J.F., Martí, D.A., Richter-Boix, A. & Gonzalez-Voyer, A. (2012) Can amphibians take the heat? Vulnerability to climate warming in sub-tropical and temperate larval amphibian communities. Global Change Biology, 18, 412421.
  • Dunham, A.E. (1993) Population responses to environmental change: operative environments, physiologically structured models, and population dynamics. Biotic Interactions and Global Change (eds P.M. Kareiva, J.G. Kingsolver & R.B. Huey), pp. 95119. Sinauer Associates, Sunderland, Massachusetts, USA.
  • Dunham, A.E., Grant, B.W. & Overall, K.L. (1989) Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiological Zoology, 62, 335355.
  • Ewel, J.J. & Whitmore, J.L. (1973) The ecological life zones of Puerto Rico and the U.S. Virgin Islands. Forest Service Research Paper ITF-18, U.S. Department of Agriculture.
  • Freidenburg, L.K. & Skelly, D.K. (2004) Microgeographical variation in thermal preference by an amphibian. Ecology Letters, 7, 369373.
  • Gates, D.M. (1980) Biophysical Ecology. Dover Publication Inc., New York.
  • Gilman, S.E., Wethey, D.S. & Helmuth, B. (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proceedings of the National Academy of Sciences USA, 103, 95609565.
  • Gorman, G.C. & Licht, P. (1974) Seasonality in ovarian cycles among tropical Anolis lizards. Ecology, 55, 360369.
  • Gunderson, A.R., Siegel, J. & Leal, M. (2011) Tests of the contribution of acclimation to geographic variation in water loss rates of the West Indian lizard Anolis cristatellus. Journal of Comparative Physiology B, 181, 965972.
  • Heatwole, H. (1976) Herpetogeography of Puerto Rico VII. Geographic variation in the Anolis cristatellus complex in Puerto Rico and the Virgin Islands. Occasional Papers of the Museum of Natural History University of Kansas, 46, 118.
  • Helmuth, B., Kingsolver, J.G. & Carrington, E. (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annual Review of Physiology, 67, 177201.
  • Helmuth, B., Broitman, B.R., Yamane, L., Gilman, S.E., Mach, K., Mislan, K.A.S. & Denny, M.W. (2010) Organismal climatology: analyzing environmental variables at scales relevant to physiological stress. Journal of Experimental Biology, 213, 9951003.
  • Hertz, P.E. (1992a) Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology, 73, 14051417.
  • Hertz, P.E. (1992b) Evaluating thermal resource partitioning by sympatric lizards Anolis cooki and A. cristatellus: a field test using null hypotheses. Oecologia, 90, 127136.
  • Hertz, P.E., Huey, R.B. & Stevenson, R.D. (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. The American Naturalist, 142, 796818.
  • Huey, R.B. (1974) Behavioral thermoregulation in lizards: importance of associated costs. Science, 184, 10011003.
  • Huey, R.B. (1983) Natural variation in body temperature and physiological performance in a lizard (Anolis cristatellus). Advances in Herpetology and Evolutionary Biology: Essays in Honor of Ernest E. Williams (eds A.G.J. Rhodin & K. Miyata), pp. 484490. Museum of Comparative Zoology, Cambridge, Massachusetts, USA.
  • Huey, R.B., Hertz, P.E. & Sinervo, B. (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. The American Naturalist, 161, 357366.
  • Huey, R.B., Losos, J.B. & Moritz, C. (2010) Are lizards toast? Science, 328, 832833.
  • Huey, R.B. & Slatkin, M. (1976) Cost and benefits of lizard thermoregulation. The Quarterly Review of Biology, 51, 363384.
  • Huey, R.B. & Stevenson, R.D. (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist, 19, 357366.
  • Huey, R.B. & Webster, T.P. (1976) Thermal biology of Anolis lizards in a complex fauna: the cristatellus group on Puerto Rico. Ecology, 57, 985994.
  • Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Álvarez-Pérez, H.J. & Garland Jr, T. (2009) Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London. Series B, 276, 19391948.
  • Husak, J.F. (2006) Does speed help you survive? A test with Collard lizards of different ages. Functional Ecology, 20, 174179.
  • IPCC (2007) Climate Change 2007. The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • Irschick, D.J., Meyers, J.J., Husak, J.F. & Le Galliard, J.-F. (2008) How does selection operate on whole-organism functional performance capacities? A review and synthesis Evolutionary Ecology Research, 10, 177196.
  • Janzen, D.H. (1967) Why mountain passes are higher in the tropics. The American Naturalist, 101, 233249.
  • Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12, 334350.
  • Kearney, M., Shine, R. & Porter, W.P. (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences USA, 106, 38353840.
  • Kearney, M., Phillips, B.L., Tracy, C.R., Christian, K.A., Betts, G. & Porter, W.P. (2008) Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography, 31, 423434.
  • Kingsolver, J.G. (1983) Ecological significance of flight activity in Colias butterflies: implications for reproductive strategy and population structure. Ecology, 64, 546551.
  • Knouft, J.H., Losos, J.B., Glor, R.E. & Kolbe, J.J. (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87, S29S38.
  • Leal, M. & Fleishman, L.J. (2004) Differences in visual signal design and detectability between allopatric populations of Anolis lizards. The American Naturalist, 163, 2639.
  • Ortiz, P.R. & Jenssen, T.A. (1982) Interspecific aggression between lizard competitors, Anolis cooki and Anolis cristatellus. Zeitschrift für Tierpsychologie, 60, 227238.
  • Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637669.
  • Pau, S., Wolkovich, E.M., Cook, B.I., Davies, T.J., Kraft, N.J.B., Bolmgren, K., Betancourt, J.L. & Cleland, E.E. (2011) Predicting phenology by integrating ecology, evolution, and climate science. Global Change Biology, 17, 36333643.
  • Porter, W.P. & Gates, D.M. (1969) Thermodynamic equilibria of animals with environment. Ecological Monographs, 39, 227244.
  • R Development Core Team. (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  • Rand, A.S. (1964) Ecological distribution in anoline lizards of Puerto Rico. Ecology, 45, 745752.
  • Ruibal, R. (1961) Thermal relations of five species of tropical lizards. Evolution, 15, 98111.
  • Sears, M.W., Raskin, E. & Angilletta, M.J. (2011) The world is not flat: defining relevant thermal landscapes in the context of climate change. Integrative and Comparative Biology, 51, 666675.
  • Sinervo, B., Méndez-de-la-Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M.L., Meza-Lázaro, R.N., Gadsden, H., Avila, L.J., Morando, M., de la Riva, I.J., Sepulveda, P.V., Rocha, C.F.D., Ibargüengoytía, N., Puntriano, C.A., Massot, M., Lepetz, V., Oksanen, T.A., Chapple, D.G., Bauer, A.M., Branch, W.R., Clobert, J. & Sites Jr, J.W. (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894899.
  • Van Damme, R., Bauwens, D. & Verheyen, R.F. (1990) Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos, 57, 6167.
  • Whitlock, M.C. & Schluter, D. (2009) The Analysis of Biological Data. Roberts and Company, Greenwood Village, Colorado, USA.
  • Willett, C.S. (2010) Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus. Evolution, 64, 25212534.
  • Willis, C.G., Ruhfel, B., Primack, R.B., Miller-Rushing, A.J. & Davis, C.C. (2008) Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences USA, 105, 1702917033.