SEARCH

SEARCH BY CITATION

References

  • Barbehenn, R.V. & Constabel, C.P. (2011) Tannins in plant-herbivore interactions. Phytochemistry, 72, 15511556.
  • Berendse, F. (1994) Litter decomposability – a neglected component of plant fitness. Journal of Ecology, 82, 187190.
  • Björk, R.G., Klemedtsson, L., Molau, U., Harndorf, J., Ödman, A. & Giesler, R. (2007) Linkages between N turnover and plant community structure in a tundra landscape. Plant and Soil, 294, 247261.
  • Bryant, J.P., Chapin III, F.S. & Klein, D.R. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357368.
  • Carey, D.B. & Wink, M. (1994) Elevational variation of quinolizidine alkaloid contents in a lupine (Lupinus argenteus) of the Rocky Mountains. Journal of Chemical Ecology, 20, 849857.
  • Close, D.C. & McArthur, C. (2002) Rethinking the role of many plant phenolics – protections from photodamage not herbivores? Oikos, 99, 166172.
  • Coley, P.D., Bryant, J.P. & Chapin III, S.F. (1985) Resource availability and plant antiherbivore defense. Science, 230, 895899.
  • Coq, S., Souquet, J.-M., Meudec, E., Cheynier, V. & Hättenschwiler, S. (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology, 91, 20802091.
  • Cornelissen, J.H.C., Quested, H.M., Gwynn-Jones, D., Van Logtestijn, R.S.P., De Beus, M.A.H., Kondratchuk, A., Callaghan, T.V. & Aerts, R. (2004) Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology, 18, 779786.
  • Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H.M., Santiago, L.S., Wardle, D.A., Wright, I.J., Aerts, R., Allison, S.D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T.V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V. & Westoby, M. (2008) Plant species traits are the predominant control of litter decomposition rates within biomes worldwide. Ecology Letters, 11, 10651071.
  • Eskelinen, A., Stark, S. & Männistö, M. (2009) Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia, 161, 113123.
  • Fortunel, C., Garnier, E., Joffre, R., Kazakou, E., Quested, H., Grigulis, K., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Doležal, J., Eriksson, O., Freitas, H., Golodets, C., Jouany, C., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quetier, F., Robson, M., Sternberg, M., Theau, J.-P., Thébault, A. & Zarovali, M. (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90, 598611.
  • Fukami, T. & Wardle, D.A. (2005) Long-term ecological dynamics: reciprocal insight from natural and anthropogenic gradients. Proceedings of the Royal Society of London, Series B – Biological Sciences, 272, 21052115.
  • Garnett, E., Jonsson, L.M., Dighton, J. & Murnen, K. (2004) Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds. Biology and Fertility of Soils, 40, 421426.
  • Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Doležal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H., Quétier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theu, J.-P., Thébault, A., Vile, D. & Zarovali, M.P. (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99, 967985.
  • Giesler, R., Esberg, C., Lagerström, A. & Graae, B.J. (2012) Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry, 108, 429445. Doi: 10.1007/s10533-011-9609-8.
  • Goodall, D.W. (1952) Some considerations in the use of point quadrats for the analysis of vegetation. Australian Journal of Scientific Research, Series B: Biological Sciences, 5, 141.
  • Gundale, M.J., Sverker, J., Albrectsen, B.R., Nilsson, M.-C. & Wardle, D.A. (2010) Variation in protein complexation capacity among and within six plant species across a boreal forest chronosequence. Plant Ecology, 211, 253266.
  • Hagerman, A.E. (1987) Radial diffusion method for determining tannin in plant-extracts. Journal of Chemical Ecology, 13, 437449.
  • Hamilton, J.G., Zangerl, A.R., DeLucia, E.H. & Berenbaum, M.R. (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecology Letters, 4, 8695.
  • Hansen, A.H., Jonasson, S., Michelsen, A. & Julkunen-Tiitto, R. (2006) Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs. Oecologia, 147, 111.
  • Hättenschwiler, S., Hagerman, A.E. & Vitousek, P.M. (2003) Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry, 64, 129148.
  • Hättenschwiler, S. & Vitousek, P.M. (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in ecology and evolution, 15, 238243.
  • Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I.T. (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytologist, 189, 950965.
  • Hoch, G. & Körner, C. (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 135, 1021.
  • Hoch, G. & Körner, C. (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. Journal of Ecology, 97, 5766.
  • Huston, M.A. & DeAngelis, D.L. (1994) Competition and Coexistance: the effects of resource transport and supply rates. The American Naturalist, 144, 954977.
  • Joanisse, G.D., Bradley, R.L. & Preston, C.M. (2008) Do late-successional tannin-rich plant communities occurring on highly acidic soils increase the DON/DIN ratio? Biology and Fertility of Soils, 44, 903907.
  • Joanisse, G.D., Bradley, R.L., Preston, C.M. & Munson, A.D. (2007) Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. New Phytologist, 175, 535546.
  • Joanisse, G.D., Bradley, R.L., Preston, C.M. & Bending, G.D. (2009) Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea marina). New Phytologist, 181, 187198.
  • Jonasson, S., Bryant, J.P., Chapin III, F.S. & Andersson, M. (1986) Plant phenols and nutrients in relation to variations in climate and rodent grazing. The American Naturalist, 128, 394408.
  • Jones, C.G. & Hartley, S.E. (1999) A protein competition model of phenolic allocation. Oikos, 86, 2744.
  • Koricheva, J. (2002) The Carbon-Nutrient Balance Hypothesis is dead; long live the carbon-nutrient balance hypothesis? Oikos, 98, 537539.
  • Koricheva, J., Larsson, S., Haukioja, E. & Keinanen, M. (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos, 83, 212226.
  • Körner, C. (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution, 22, 569574.
  • Kraus, T.E.C., Dahlgren, R.A. & Zasoski, R.J. (2003a) Tannins in nutrient dynamics of forest ecosystems – a review. Plant and Soil, 256, 4166.
  • Kraus, T.E.C., Yu, Z., Preston, C.M., Dahlgren, R.A. & Zasoski, R.J. (2003b) Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. Journal of Chemical Ecology, 29, 703730.
  • Lepš, J., de Bello, F., Šmilauer, P. & Doležal, J. (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography, 34, 856863.
  • Lerdau, M. & Coley, P.D. (2002) Benefits of the Carbon-Nutrient Balance Hypothesis. Oikos, 98, 534536.
  • Mason, N., Richardson, S., Peltzer, D., de Bello, F., Wardle, D.A. & Allen, R. (2012) Changes in co-existence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology, 100, 678689.
  • Meier, C.L. & Bowman, W.D. (2008) Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia, 158, 95107.
  • Nilsson, M.-C. (1994) Separation of allelopathy and resource competition by the boreal dwarf-shrub Empetrum hermaphroditum Hagerup. Oecologia, 98, 17.
  • Northup, R.R., Dahlgren, R.A. & McColl, J.G. (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California's pygmy forest: a positive feedback? Biogeochemistry, 42, 189220.
  • Northup, R.R., Yu, Z., Dahlgren, R.A. & Vogt, K.A. (1995) Polyphenol control of nitrogen release from pine litter. Nature, 377, 227229.
  • Pastor, J. & Naiman, R.J. (1992) Selective foraging and ecosystem processes in boreal forests. The American Naturalist, 139, 690705.
  • Porter, L.J., Hrstich, L.N. & Chan, B.G. (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25, 223230.
  • Ruess, L., Michelsen, A., Schmidt, I.K. & Jonasson, S. (1999) Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant and Soil, 212, 6373.
  • Saetnan, E.R. & Batzli, G.O. (2009) Effects of simulated herbivory on defensive compounds in forage plants of Norwegian alpine rangelands. Journal of Chemical Ecology, 35, 469475.
  • Salminen, J.-P. & Karonen, M. (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology, 25, 325338.
  • Schimel, J.P., Cates, R.G. & Ruess, R. (1998) The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry, 42, 221234.
  • Schweitzer, J.A., Bailey, J.K., Rehill, B.J., Martinsen, G.D., Hart, S.C., Lindroth, R.L., Keim, P. & Whitham, T.G. (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecology Letters, 7, 127134.
  • Schweitzer, J.A., Madritch, M.D., Bailey, J.K., LeRoy, C.J., Fischer, D.G., Rehill, B.J., Lindroth, R.L., Hagerman, A.E., Wooley, S.C., Hart, S.C. & Whitham, T.G. (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems, 11, 10051020.
  • Shi, P., Körner, C. & Hoch, G. (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Functional Ecology, 22, 213220.
  • Stamp, N. (2003) Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78, 2355.
  • Stern, J.L., Hagerman, A.E., Steinberg, P.D., Winter, F.C. & Estes, J.A. (1996) A new essay for quantifying brown algal phlorotannins and comparisons to previous methods. Journal of Chemical Ecology, 22, 12731293.
  • Suding, K.N., Lavorel, F.S., Chapin III, F.S., Cornelissen, H.C., Díaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T. & Navas, M.-L. (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14, 11251140.
  • Sundqvist, M.K., Giesler, R., Graae, B.J., Wallander, H., Fogelberg, E. & Wardle, D.A. (2011a) Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos, 120, 128142.
  • Sundqvist, M.K., Giesler, R. & Wardle, D.A. (2011b) Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra. PLoS One, 6, e27056. Doi:10.1371/journal.pone.0027056.
  • Tilman, D. (1985) The resource-ratio hypothesis of plant succession. The American Naturalist, 125, 827852.
  • Tybirk, K., Nilsson, M.-C., Michelsen, A., Lakkenborg Kristensen, H., Schevtsova, A., Strandberg, M.T., Johansson, M., Nielsen, K.E., Riis-Nielsen, T., Strandberg, B. & Johnsen, I. (2000) Nordic Empetrum dominated ecosystems: function and susceptibility to climate change. Ambio, 29, 9097.
  • Wallis, C.M., Huber, D.P.W. & Lewis, K.J. (2011) Ecosystem, location, and climate effects on foliar secondary metabolites of Lodgepole pine populations from central British Colombia. Journal of Chemical Ecology, 37, 607621.
  • Wallstedt, A., Gallet, C. & Nilsson, M.-C. (2005) Behaviour and recovery of the secondary metabolite batatasin-III from boreal forest humus: influence of temperature, humus type and microbial community. Biochemical Systematics and Ecology, 33, 385407.
  • Wardle, D.A., Nilsson, M.-C., Gallet, C. & Zackrisson, O. (1998) An ecosystem-level perspective of allelopathy. Biological Reviews, 73, 305319.
  • Wardle, D.A., Nilsson, M.-C., Zackrisson, O. & Gallet, C. (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 35, 827835.
  • Wardle, D.A., Bardgett, R.D., Walker, L.R. & Bonner, K.I. (2009) Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences. Functional Ecology, 23, 442543.
  • Wurzburger, N. & Henrick, P.L. (2009) Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. Journal of Ecology, 97, 528536.
  • Zidorn, C. (2010) Altitudinal variation of secondary metabolites in flowering heads of the Asteraceae: trends and causes. Phytochemistry Reivews, 9, 197203.