SEARCH

SEARCH BY CITATION

References

  • Cohen, P. & Frame, S. (2001) The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769776.
  • Cole, A., Frame, S. & Cohen, P. (2004) Further evidence that tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is autophosphorylation event. Biochem. J. 377, 249255.
  • Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785789.
  • DeChiara, T.M., Kimble, R.B., Poueymirou, W.T., Rojas, J., Masiakowski, P., Valenzuela, D.M. & Yancopoulos, G.D. (2000) Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat. Genet. 24, 271274.
  • Doble, B.W. & Woodgett, J.R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 11751186.
  • Etienne-Manneville, S. & Hall, A. (2003) Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753756.
  • Forrester, W.C. (2002) The Ror receptor tyrosine kinase family. Cell. Mol. Life Sci. 59, 8396.
  • Gao, Z.-H., Seeling, J.M., Hill, V., Yochum, A. & Virshup, D.M. (2002) Casein kinase I phosphorylates and destabilizes the β-catenin degradation complex. Proc. Natl. Acad. Sci. USA 99, 11821187.
  • Gonzalez-Sancho, J.M., Brennan, K.R., Castelo-Soccio, L.A. & Brown, A.M. (2004) Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize β-catenin. Mol. Cell. Biol. 24, 47574768.
  • Harwood, J.A. (2001) Regulation of GSK-3: a cellular multiprocessor. Cell 105, 821824.
  • Hinoi, T., Yamamoto, H., Kishida, M., Takada, S., Kishida, S. & Kikuchi, A. (2000) Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3β-dependent phosphorylation of β-catenin and down-regulates β-catenin. J. Biol. Chem. 275, 3439934406.
  • Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S. & Kikuchi, A. (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 13711384.
  • Jope, R.S. & Johnson, G.V.W. (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95102.
  • Kani, S., Oishi, I., Yamamoto, H., Yoda, A., Suzuki, H., Nomachi, A., Iozumi, K., Nishita, M., Kikuchi, A., Takumi, T. & Minami, Y. (2004) The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iɛ. J. Biol. Chem. 279, 5010250109.
  • Kilian, B., Mansukoski, H., Barbosa, F.C., Ulrich, F., Tada, M. & Heisenberg, C.P. (2003) The role of Ppt/Wnt5a in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev. 120, 467476.
  • Kim, D., Kim, S., Koh, H., Yoon, S.O., Chung, A.S., Cho, K.S. & Chung, J. (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 15, 19531962.
  • Klein, P.S. & Melton, D.A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 84458459.
  • Kobayashi, T., Hino, S., Oue, N., Asahara, T., Zollo, M., Yasui, W. & Kikuchi, A. (2006) Glycogen synthase kinase 3 and h-prune regulate cell migration by modulating focal adhesions. Mol. Cell. Biol. 26, 898911.
  • Koivisto, L., Alavian, K., Häkkinen, L., Pelech, S., McCulloch, C.A. & Larjava, H. (2003) Glycogen synthase kinase-3 regulates formation of long lamellipodia in human keratinocytes. J. Cell Sci. 116, 37493760.
  • Koivisto, L., Jiang, G., Häkkinen, L., Chan, B. & Larjava, H. (2006) HaCaT keratinocytes migration is dependent on epidermal growth factor receptor signaling and glycogen synthase kinase-3α. Exp. Cell Res. 312, 27912805.
  • Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., Yasui, W. & Kikuchi, A. (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66, 1043910448.
  • Lee, E., Salic, A. & Kirschner, M.W. (2001) Physiological regulation of β-catenin stability by Tcf3 and CKIɛ. J. Cell Biol. 154, 983993.
  • Liao, X., Zhang, L., Thrasher, J.B., Du, J. & Li, B. (2003) Glycogen synthase kinase-3β suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol. Cancer Ther. 2, 12151222.
  • Masckauchán, T.N.H., Agalliu, D., Vorontchikhina, M., Ahn, A., Parmalee, N.L., Li, C.-M., Khoo, A., Tycko, B., Brown, A.M.C. & Kitajewski, J. (2006) Wnt5a signalling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol. Biol. Cell 17, 51635172.
  • Masiakowski, P. & Carroll, R.D. (1992) A novel family of cell surface receptor with tyrosine kinase-like domain. J. Biol. Chem. 267, 2618126190.
  • Matsuda, T., Nomi, M., Ikeya, M., Kani, S., Oishi, I., Terashima, T., Takada, S. & Minami, Y. (2001) Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech. Dev. 105, 153156.
  • Matsuda, T., Suzuki, H., Oishi, I., Kani, S., Kuroda, Y., Komori, T., Sasaki, A., Watanabe, K. & Minami, Y. (2003) The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution. J. Biol. Chem. 278, 2905729064.
  • Mikels, A.J. & Nusse, R. (2006) Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLos Biol. 4, e115. Doi: 10.1371/journal.pbio.0040115.
  • Moon, R.T., Campbell, R.M., Christian, J.L., McGrew, L.L., Shih, J. & Fraser, S. (1993) Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119, 97111.
  • Nishita, M., Yoo, S.K., Nomachi, A., Kani, S., Sougawa, N., Ohta, Y., Takada, S., Kikuchi, A. & Minami, Y. (2006) Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555562.
  • Nomi, M., Oishi, I., Kani, S., Suzuki, H., Matsuda, T., Yoda, A., Kitamura, M., Itoh, K., Takeuchi, S., Takeda, K., Akira, S., Ikeya, M., Takada, S. & Minami, Y. (2001) Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol. Cell. Biol. 21, 83298335.
  • Oishi, I., Suzuki, H., Onishi, N., Takada, R., Kani, S., Ohkawara, B., Koshida, I., Suzuki, K., Yamada, G., Schwabe, G.C., Mundlos, S., Shibuya, H., Takada, S. & Minami, Y. (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645654.
  • Oishi, I., Takeuchi, S., Hashimoto, R., Nagabukuro, A., Ueda, T., Liu, Z.-J., Hatta, T., Akira, S., Matsuda, Y., Yamamura, H., Otani, H. & Minami, Y. (1999) Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells 4, 4156.
  • Qian, D., Jones, C., Rzadzinska, A., Mark, S., Zhang, X., Steel, K.P., Dai, X. & Chen, P. (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev. Biol. 306, 121133.
  • Schulte, G., Bryja, V., Rawal, N., Castelo-Branco, G., Sousa, K.M. & Arenas, E. (2005) Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. J. Neurochem. 92, 15501553.
  • Stambolic, V., Ruel, L. & Woodgett, J.R. (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Curr. Biol. 6, 16641668.
  • Takada, R., Hijikata, H., Kondoh, H. & Takada, S. (2005) Analysis of combinatorial effects of Wnts and Frizzleds on β-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells 10, 919928.
  • Takeuchi, S., Takeda, K., Oishi, I., Nomi, M., Ikeya, M., Itoh, K., Tamura, S., Ueda, T., Hatta, T., Otani, H., Terashima, T., Takada, S., Yamamura, H., Akira, S. & Minami, Y. (2000) Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5, 7178.
  • Tanji, C., Yamamoto, H., Yorioka, N., Kohno, N., Kikuchi, K. & Kikuchi, A. (2002) A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3β (GSK-3β) and mediates protein kinase A-dependent inhibition of GSK-3β. J. Biol. Chem. 277, 3695536961.
  • Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M. & Trent, J.M. (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279288.
  • Woodgett, J.R. (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 24312438.
  • Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, H., Takada, R., Takada, S. & Nishida, E. (2002) JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 3, 6975.
  • Yoda, A., Oishi, I. & Minami, Y. (2003) Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J. Recept. Signal Transduct. 23, 115.
  • Yoon, S.O., Shin, S. & Mercurio, A.M. (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the α6β4 integrin. Cancer Res. 65, 27612769.