SEARCH

SEARCH BY CITATION

References

  • Akai, Y., Adachi, N., Hayashi, Y., Eitoku, M., Sano, N., Natsume, R., Kudo, N., Tanokura, M., Senda, T. & Horikoshi, M. (2010) Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction. Proc. Natl Acad. Sci. USA 107, 81538158.
  • Archambault, J., Lacroute, F., Ruet, A. & Friesen, J.D. (1992) Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 12, 41424152.
  • Baker, S.P., Phillips, J., Anderson, S., Qiu, Q., Shabanowitz, J., Smith, M.M., Yates, J.R. III, Hunt, D.F. & Grant, P.A. (2010) Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat. Cell Biol. 12, 294298.
  • Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I. & Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823837.
  • Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M. & Reinberg, D. (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301, 10901093.
  • Briggs, S.D., Bryk, M., Strahl, B.D., Cheung, W.L., Davie, J.K., Dent, S.Y., Winston, F. & Allis, C.D. (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 32863295.
  • Carrozza, M.J., Li, B., Florens, L., Suganuma, T., Swanson, S.K., Lee, K.K., Shia, W.J., Anderson, S., Yates, J., Washburn, M.P. & Workman, J.L. (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581592.
  • Chimura, T., Kuzuhara, T. & Horikoshi, M. (2002) Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID. Proc. Natl Acad. Sci. USA 99, 93349339.
  • Chu, Y., Sutton, A., Sternglanz, R. & Prelich, G. (2006) The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol. Cell. Biol. 26, 30293038.
  • Cramer, P., Bushnell, D.A. & Kornberg, R.D. (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 18631876.
  • Dover, J., Schneider, J., Tawiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M. & Shilatifard, A. (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 2836828371.
  • Du, H.N. & Briggs, S.D. (2010) A nucleosome surface formed by histone H4, H2A, and H3 residues is needed for proper histone H3 Lys36 methylation, histone acetylation, and repression of cryptic transcription. J. Biol. Chem. 285, 1170411713.
  • Du, H.N., Fingerman, I.M. & Briggs, S.D. (2008) Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4. Genes Dev. 22, 27862798.
  • Egelhofer, T.A., Minoda, A., Klugman, S., et al. (2011) An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18, 9193.
  • English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127, 495508.
  • Exinger, F. & Lacroute, F. (1992) 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 22, 911.
  • Gerber, M. & Shilatifard, A. (2003) Transcriptional elongation by RNA polymerase II and histone methylation. J. Biol. Chem. 278, 2630326306.
  • Guthrie, C. & Fink, G.R. (1991) Guide to Yeast Genetics and Molecular Biology. New York, NY: Academic press.
  • Hainer, S.J. & Martens, J.A. (2011) Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Mol. Cell. Biol. 31, 35573568.
  • Hayashi, Y., Senda, T., Sano, N. & Horikoshi, M. (2009) Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network. Genes Cells 14, 789806.
  • Hyland, E.M., Molina, H., Poorey, K., Jie, C., Xie, J., Dai, J., Qian, J., Bekiranov, S., Auble, D.T., Pandey, A. & Boeke, J.D. (2011) An evolutionary ‘young’ lysine residue in histone H3 attenuates transcriptional output in Saccharomyces cerevisiae. Genes Dev. 25, 13061319.
  • Joshi, A.A. & Struhl, K. (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971978.
  • Kawano, A., Hayashi, Y., Noguchi, S., Handa, H., Horikoshi, M. & Yamaguchi, Y. (2011) Global analysis for functional residues of histone variant Htz1 using the comprehensive point mutant library. Genes Cells 16, 590607.
  • Kawashima, S., Nakabayashi, Y., Matsubara, K., Sano, N., Enomoto, T., Tanaka, K., Seki, M. & Horikoshi, M. (2011) Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation. EMBO J. 30, 33533367.
  • Kayne, P.S., Kim, U.J., Han, M., Mullen, J.R., Yoshizaki, F. & Grunstein, M. (1988) Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 2739.
  • Keogh, M.C., Kurdistani, S.K., Morris, S.A., et al. (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593605.
  • Keogh, M.C., Podolny, V. & Buratowski, S. (2003) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol. Cell. Biol. 23, 70057018.
  • Kim, T. & Buratowski, S. (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137, 259272.
  • Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N. & Nozaki, N. (2008) The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct. Funct. 33, 6173.
  • Kizer, K.O., Phatnani, H.P., Shibata, Y., Hall, H., Greenleaf, A.L. & Strahl, B.D. (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25, 33053316.
  • Kornberg, R.D. (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184, 868871.
  • Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693705.
  • Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Beattie, B.K., Emili, A., Boone, C., Shilatifard, A., Buratowski, S. & Greenblatt, J. (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 42074218.
  • Latham, J.A. & Dent, S.Y. (2007) Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14, 10171024.
  • Lee, J.S., Smith, E. & Shilatifard, A. (2010) The language of histone crosstalk. Cell 142, 682685.
  • Li, B., Carey, M. & Workman, J.L. (2007) The role of chromatin during transcription. Cell 128, 707719.
  • Li, B., Howe, L., Anderson, S., Yates, JR. III & Workman, J.L. (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 88978903.
  • Liang, G., Lin, J.C., Wei, V., Yoo, C., Cheng, J.C., Nguyen, C.T., Weisenberger, D.J., Egger, G., Takai, D., Gonzales, F.A. & Jones, P.A. (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. USA 101, 73577362.
  • Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251260.
  • Matangkasombut, O. & Buratowski, S. (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell 11, 353363.
  • Matsubara, K., Sano, N., Umehara, T. & Horikoshi, M. (2007) Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12, 1333.
  • Morris, S.A., Rao, B., Garcia, B.A., Hake, S.B., Diaz, R.L., Shabanowitz, J., Hunt, D.F., Allis, C.D., Lieb, J.D. & Strahl, B.D. (2007) Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J. Biol. Chem. 282, 76327640.
  • Munakata, T., Adachi, N., Yokoyama, N., Kuzuhara, T. & Horikoshi, M. (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5, 221233.
  • Murray, S., Udupa, R., Yao, S., Hartzog, G. & Prelich, G. (2001) Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cyclin-dependent kinase. Mol. Cell. Biol. 21, 40894096.
  • Nakanishi, S., Sanderson, B.W., Delventhal, K.M., Bradford, W.D., Staehling-Hampton, K. & Shilatifard, A. (2008) A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat. Struct. Mol. Biol. 15, 881888.
  • Natsume, R., Eitoku, M., Akai, Y., Sano, N., Horikoshi, M. & Senda, T. (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338341.
  • Ng, H.H., Robert, F., Young, R.A. & Struhl, K. (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709719.
  • Ogiwara, H., Ui, A., Kawashima, S., Kugou, K., Onoda, F., Iwahashi, H., Harata, M., Ohta, K., Enomoto, T. & Seki, M. (2007) Actin-related protein Arp4 functions in kinetochore assembly. Nucleic Acids Res. 35, 31093117.
  • Qiu, H., Hu, C., Yoon, S., Natarajan, K., Swanson, M.J. & Hinnebusch, A.G. (2004) An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol. Cell. Biol. 24, 41044117.
  • Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W.W., Wilm, M., Aasland, R. & Stewart, A.F. (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 71377148.
  • Sakamoto, M., Noguchi, S., Kawashima, S., Okada, Y., Enomoto, T., Seki, M. & Horikoshi, M. (2009) Global analysis of mutual interaction surfaces of nucleosomes with comprehensive point mutants. Genes Cells 14, 12711330.
  • Samanta, U., Bahadur, R.P. & Chakrabarti, P. (2002) Quantifying the accessible surface area of protein residues in their local environment. Protein Eng. 15, 659667.
  • Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C., Schreiber, S.L., Mellor, J. & Kouzarides, T. (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419, 407411.
  • Sato, L., Noguchi, S., Hayashi, Y., Sakamoto, M. & Horikoshi, M. (2010) Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors. Genes Cells 15, 553594.
  • Strahl, B.D. & Allis, C.D. (2000) The language of covalent histone modifications. Nature 403, 4145.
  • Sun, Z.W. & Allis, C.D. (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104108.
  • Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 10251040.
  • Vermeulen, M., Mulder, K.W., Denissov, S., Pijnappel, W.W., van Schaik, F.M., Varier, R.A., Baltissen, M.P., Stunnenberg, H.G., Mann, M. & Timmers, H.T. (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 5869.
  • Vojnic, E., Simon, B., Strahl, B.D., Sattler, M. & Cramer, P. (2006) Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J. Biol. Chem. 281, 1315.
  • Wallis, J.W., Rykowski, M. & Grunstein, M. (1983) Yeast histone H2B containing large amino terminus deletions can function in vivo. Cell 35, 711719.
  • White, C.L., Suto, R.K. & Luger, K. (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 52075218.
  • Wright, P.E. & Dyson, H.J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321331.
  • Xiao, T., Hall, H., Kizer, K.O., Shibata, Y., Hall, M.C., Borchers, C.H. & Strahl, B.D. (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654663.