SEARCH

SEARCH BY CITATION

References

  • Alvarez, B. & Moreno, S. (2006) Fission yeast Tor2 promotes cell growth and represses cell differentiation. J. Cell Sci. 119, 44754485.
  • Audhya, A., Loewith, R., Parsons, A.B., Gao, L., Tabuchi, M., Zhou, H., Boone, C., Hall, M.N. & Emr, S.D. (2004) Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J. 23, 37473757.
  • Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J., Papageorgiou, A. & Dai, N. (2009) Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab. 296, E592E602.
  • Cafferkey, R., Young, P.R., McLaughlin, M.M., Bergsma, D.J., Koltin, Y., Sathe, G.M., Faucette, L., Eng, W.K., Johnson, R.K. & Livi, G.P. (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol. Cell. Biol. 13, 60126023.
  • Chen, J., Zheng, X.F., Brown, E.J. & Schreiber, S.L. (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl Acad. Sci. USA 92, 49474951.
  • Choo, A.Y., Yoon, S.-O., Kim, S.G., Roux, P.P. & Blenis, J. (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 1741417419.
  • Feldman, M.E., Apsel, B., Uotila, A., Loewith, R., Knight, Z.A., Ruggero, D. & Shokat, K.M. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38.
  • García-Martínez, J.M., Moran, J., Clarke, R.G., Gray, A., Cosulich, S.C., Chresta, C.M. & Alessi, D.R. (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 421, 2942.
  • Harris, T.E. & Lawrence, J.C. (2003) TOR signaling. Sci. STKE 2003, re15.
  • Hayashi, T., Hatanaka, M., Nagao, K., Nakaseko, Y., Kanoh, J., Kokubu, A., Ebe, M. & Yanagida, M. (2007) Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 12, 13571370.
  • Heitman, J., Movva, N.R. & Hall, M.N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905909.
  • Helliwell, S.B., Wagner, P., Kunz, J., Deuter-Reinhard, M., Henriquez, R. & Hall, M.N. (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell 5, 105118.
  • Hilti, N., Baumann, D., Schweingruber, A.M., Bigler, P. & Schweingruber, M.E. (1999) Gene ste20 controls amiloride sensitivity and fertility in Schizosaccharomyces pombe. Curr. Genet. 35, 585592.
  • Ikeda, K., Morigasaki, S., Tatebe, H., Tamanoi, F. & Shiozaki, K. (2008) Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. Cell Cycle 7, 358364.
  • Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Rüegg, M.A., Hall, A. & Hall, M.N. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 11221128.
  • Kamada, Y., Yoshino, K.-I., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K. & Ohsumi, Y. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell. Biol. 30, 10491058.
  • Kawai, M., Nakashima, A., Ueno, M., Ushimaru, T., Aiba, K., Doi, H. & Uritani, M. (2001) Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. Curr. Genet. 39, 166174.
  • Kim, D.-H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P. & Sabatini, D.M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163175.
  • Kohda, T.A., Tanaka, K., Konomi, M., Sato, M., Osumi, M. & Yamamoto, M. (2007) Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12, 155170.
  • Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P. & Hall, M.N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457468.
  • Ma, X.M. & Blenis, J. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307318.
  • Mata, J., Lyne, R., Burns, G. & Bahler, J. (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet. 32, 143147.
  • Matsuo, T., Otsubo, Y., Urano, J., Tamanoi, F. & Yamamoto, M. (2007) Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol. Cell. Biol. 27, 31543164.
  • Mukaiyama, H., Nakase, M., Nakamura, T., Kakinuma, Y. & Takegawa, K. (2010) Autophagy in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 584, 13271334.
  • Nakashima, A., Hasegawa, T., Mori, S., Ueno, M., Tanaka, S., Ushimaru, T., Sato, S. & Uritani, M. (2006) A starvation-specific serine protease gene, isp6+, is involved in both autophagy and sexual development in Schizosaccharomyces pombe. Curr. Genet. 49, 403413.
  • Nakashima, A., Sato, T. & Tamanoi, F. (2010) Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J. Cell Sci. 123, 777786.
  • Noda, T. & Ohsumi, Y. (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 39633966.
  • Ohne, Y., Takahara, T., Hatakeyama, R., Matsuzaki, T., Noda, M., Mizushima, N. & Maeda, T. (2008) Isolation of hyperactive mutants of mammalian target of rapamycin. J. Biol. Chem. 283, 3186131870.
  • Okazaki, K., Okazaki, N., Kume, K., Jinno, S., Tanaka, K. & Okayama, H. (1990) High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 18, 64856489.
  • Oshiro, N., Yoshino, K.-I., Hidayat, S., Tokunaga, C., Hara, K., Eguchi, S., Avruch, J. & Yonezawa, K. (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9, 359366.
  • Otsubo, Y. & Yamamato, M. (2008) TOR signaling in fission yeast. Crit. Rev. Biochem. Mol. Biol. 43, 277283.
  • Petersen, J. & Nurse, P. (2007) TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat. Cell Biol. 9, 12631272.
  • Reinke, A., Chen, J.C.-Y., Aronova, S. & Powers, T. (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 281, 3161631626.
  • Sarkaria, J.N., Busby, E.C., Tibbetts, R.S., Roos, P., Taya, Y., Karnitz, L.M. & Abraham, R.T. (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59, 43754382.
  • Sato, S., Suzuki, H., Widyastuti, U., Hotta, Y. & Tabata, S. (1994) Identification and characterization of genes induced during sexual differentiation in Schizosaccharomyces pombe. Curr. Genet. 26, 3137.
  • Sato, T., Nakashima, A., Guo, L. & Tamanoi, F. (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 284, 1278312791.
  • Schonbrun, M., Laor, D., López-Maury, L., Bähler, J., Kupiec, M. & Weisman, R. (2009) TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions. Mol. Cell. Biol. 29, 45844594.
  • van Slegtenhorst, M., Khabibullin, D., Hartman, T.R., Nicolas, E., Kruger, W.D. & Henske, E.P. (2007) The Birt-Hogg-Dube and tuberous sclerosis complex homologs have opposing roles in amino acid homeostasis in Schizosaccharomyces pombe. J. Biol. Chem. 282, 2458324590.
  • Soliman, G.A., Acosta-Jaquez, H.A., Dunlop, E.A., Ekim, B., Maj, N.E., Tee, A.R. & Fingar, D.C. (2010) mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 285, 78667879.
  • Sturgill, T.W. & Hall, M.N. (2009) Activating mutations in TOR are in similar structures as oncogenic mutations in PI3KCα. ACS Chem. Biol. 4, 9991015.
  • Thoreen, C.C., Kang, S.A., Chang, J.W., Liu, Q., Zhang, J., Gao, Y., Reichling, L.J., Sim, T., Sabatini, D.M. & Gray, N.S. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 80238032.
  • Urano, J., Sato, T., Matsuo, T., Otsubo, Y., Yamamoto, M. & Tamanoi, F. (2007) Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl Acad. Sci. USA 104, 35143519.
  • Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., Broach, J.R., De Virgilio, C., Hall, M.N. & Loewith, R. (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663674.
  • Uritani, M., Hidaka, H., Hotta, Y., Ueno, M., Ushimaru, T. & Toda, T. (2006) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells 11, 13671379.
  • Weisman, R. & Choder, M. (2001) The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J. Biol. Chem. 276, 70277032.
  • Weisman, R., Choder, M. & Koltin, Y. (1997) Rapamycin specifically interferes with the developmental response of fission yeast to starvation. J. Bacteriol. 179, 63256334.
  • Weisman, R., Finkelstein, S. & Choder, M. (2001) Rapamycin blocks sexual development in fission yeast through inhibition of the cellular function of an FKBP12 homolog. J. Biol. Chem. 276, 2473624742.
  • Weisman, R. (2010) Fission yeast TOR and rapamycin. In: The enzymes, Vol. 27 (Structure, function and regulation of TOR complexes from yeasts to mammals) (eds M.N. Hall & F. Tamanoi), pp. 251269. Burlington: Academic Press.
  • Weisman, R., Roitburg, I., Nahari, T. & Kupiec, M. (2005) Regulation of leucine uptake by tor1+ in Schizosaccharomyces pombe is sensitive to rapamycin. Genetics 169, 539550.
  • Weisman, R., Roitburg, I., Schonbrun, M., Harari, R. & Kupiec, M. (2007) Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics 175, 11531162.
  • Wullschleger, S., Loewith, R. & Hall, M.N. (2006) TOR signaling in growth and metabolism. Cell 124, 471484.
  • Wullschleger, S., Loewith, R., Oppliger, W. & Hall, M.N. (2005) Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 280, 3069730704.
  • Yan, G., Shen, X. & Jiang, Y. (2006) Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J. 25, 35463555.