Active tectonics of an apparently aseismic region: distributed active strike-slip faulting in the Hangay Mountains of central Mongolia



We identify and describe a series of east–west left-lateral strike-slip faults (named the Songino-Margats, the Hag Nuur, the Uliastay and the South Hangay fault systems) in the Hangay mountains of central Mongolia: an area that has little in the way of recorded seismicity and which is often considered as a rigid block within the India–Eurasia collision zone. The strike-slip faults of central Mongolia constitute a previously unrecognized hazard in this part of Mongolia. Each of the strike-slip faults show indications of late Quaternary activity in the form of aligned sequences of sag-ponds and pressure-ridges developed in alluvial deposits. Total bed-rock displacements of ∼3 km are measured on both the Songino-Margats and South Hangay fault systems. Bed-rock displacements of 11 km are observed across the Hag Nuur fault. Cumulative offset across the Uliastay fault systems are unknown but are unlikely to be large. We have no quantitative constraint on the age of faulting in the Hangay. The ≤20 km of cumulative slip on the Hangay faults might, at least in part, be inherited from earlier tectonic movements. Our observations show that, despite the almost complete absence of instrumentally recorded seismicity in the Hangay, this part of Mongolia is cut through by numerous distributed strike-slip faults that accommodate regional left-lateral shear between Siberia and China. Central Mongolia is thus an important component of the India–Eurasia collision that would be overlooked in models of the active tectonics based on the distribution of seismicity. We suggest that active faults such as those identified in the Hangay of Mongolia might exist in other, apparently aseismic, regions within continental collision zones.