SEARCH

SEARCH BY CITATION

Keywords:

  • Palaeoseismology;
  • Seismicity and tectonics;
  • Continental tectonics: extensional;
  • Tectonics and landscape evolution;
  • Neotectonics

SUMMARY

Urgent urban-planning problems related to the 2009 April, Mw 6.3, L’Aquila earthquake prompted immediate excavation of palaeoseismological trenches across the active faults bordering the Aterno river valley; namely, the Mt. Marine, Mt. Pettino and Paganica faults. Cross-cutting correlations amongst existing and new trenches that were strengthened by radiocarbon ages and archaeological constraints show unambiguously that these three investigated structures have been active since the Last Glacial Maximum period, as seen by the metric offset that affected the whole slope/alluvial sedimentary succession up to the historical deposits. Moreover, in agreement with both 18th century accounts and previous palaeoseismological data, we can affirm now that these faults were responsible for the catastrophic 1703 February 2, earthquake (Mw 6.7). The data indicate that the Paganica–San Demetrio fault system has ruptured in the past both together with the conterminous Mt. Pettino–Mt. Marine fault system, along more than 30 km and causing an Mw 6.7 earthquake, and on its own, along ca. 19 km, as in the recent 2009 event and in the similar 1461 AD event. This behaviour of the L’Aquila faults has important implications in terms of seismic hazard assessment, while it also casts new light on the ongoing fault linkage processes amongst these L’Aquila faults.