SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Anu Lavola, Line Nybakken, Matti Rousi, Jyrki Pusenius, Mari Petrelius, Seppo Kellomäki, Riitta Julkunen-Tiitto, Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry, Physiologia Plantarum, 2013, 149, 4
  2. 2
    Liisa Huttunen, Karita Saravesi, Annamari Markkola, Pekka Niemelä, Do elevations in temperature, CO2, and nutrient availability modify belowground carbon gain and root morphology in artificially defoliated silver birch seedlings?, Ecology and Evolution, 2013, 3, 9
  3. 3
    Liisa Huttunen, Pekka Niemelä, Vladimir Ossipov, Matti Rousi, Tero Klemola, Do warmer growing seasons ameliorate the recovery of mountain birches after winter moth outbreak?, Trees, 2012, 26, 3, 809

    CrossRef

  4. 4
    Timothy M. Wertin, Mary Anne McGuire, Marc van Iersel, John M. Ruter, Robert O. Teskey, Effects of elevated temperature and [CO2] on photosynthesis, leaf respiration, and biomass accumulation ofPinus taedaseedlings at a cool and a warm site within the species’ current range, Canadian Journal of Forest Research, 2012, 42, 5, 943

    CrossRef

  5. 5
    Adam B. McKiernan, Julianne M. O’Reilly-Wapstra, Cassandra Price, Noel W. Davies, Brad M. Potts, Mark J. Hovenden, Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide, Journal of Chemical Ecology, 2012, 38, 2, 204

    CrossRef

  6. 6
    T. M. Wertin, M. A. McGuire, R. O. Teskey, Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range, Tree Physiology, 2011, 31, 12, 1277

    CrossRef

  7. 7
    G. E. Hemery, J. R. Clark, E. Aldinger, H. Claessens, M. E. Malvolti, E. O'connor, Y. Raftoyannis, P. S. Savill, R. Brus, Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities, Forestry, 2010, 83, 1, 65

    CrossRef

  8. 8
    Richard L. Lindroth, Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics, Journal of Chemical Ecology, 2010, 36, 1, 2

    CrossRef

  9. 9
    R. Tegelberg, R. Julkunen-Tiitto, M. Vartiainen, R. Paunonen, M. Rousi, S. Kellomäki, Exposures to elevated CO2, elevated temperature and enhanced UV-B radiation modify activities of polyphenol oxidase and guaiacol peroxidase and concentrations of chlorophylls, polyamines and soluble proteins in the leaves of Betula pendula seedlings, Environmental and Experimental Botany, 2008, 62, 3, 308

    CrossRef

  10. 10
    T. O. Veteli, W. J. Mattson, P. Niemelä, R. Julkunen-Tiitto, S. Kellomäki, K. Kuokkanen, A. Lavola, Do Elevated Temperature and CO2 Generally Have Counteracting Effects on Phenolic Phytochemistry of Boreal Trees?, Journal of Chemical Ecology, 2007, 33, 2, 287

    CrossRef

  11. 11
    E. L. ZVEREVA, M. V. KOZLOV, Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis, Global Change Biology, 2006, 12, 1