SEARCH

SEARCH BY CITATION

Keywords:

  • bacteria;
  • carbon;
  • fungi;
  • microbe;
  • respiration;
  • root;
  • soil;
  • storage;
  • temperature;
  • warming

Abstract

Global warming is projected to be greatest in northern regions, where forest fires are also increasing in frequency. Thus, interactions between fire and temperature on soil respiration at high latitudes should be considered in determining feedbacks to climate. We tested the hypothesis that experimental warming will augment soil CO2 flux in a recently burned boreal forest by promoting microbial and root growth, but that this increase will be less apparent in more severely burned areas. We used open-top chambers to raise temperatures 0.4–0.9°C across two levels of burn severity in a fire scar in Alaskan black spruce forest. After 3 consecutive years of warming, soil respiration was measured through a portable gas exchange system. Abundance of active microbes was determined by using Biolog EcoPlates for bacteria and ergosterol analysis for fungi. Elevated temperatures increased soil CO2 flux by 20% and reduced root biomass, but had no effect on bacterial or fungal abundance or soil organic matter (SOM) content. Soil respiration, fungal abundance, SOM, and root biomass decreased with increasing burn severity. There were no significant interactions between temperature and burn severity with respect to any measurement. Higher soil respiration rates in the warmed plots may be because of higher metabolic activity of microbes or roots. All together, we found that postfire soils are a greater source of CO2 to the atmosphere under elevated temperatures even in severely burned areas, suggesting that global warming may produce a positive feedback to atmospheric CO2, even in young boreal ecosystems.