• altitudinal gradient;
  • climate change;
  • population decline;
  • rainforest birds;
  • range shift


Global climates are changing rapidly and biological responses are becoming increasingly apparent. Here, we use empirical abundance patterns across an altitudinal gradient and predicted altitudinal range shifts to estimate change in total population size relative to distribution area in response to climate warming. Adopting this approach we predict that, for nine out of 12 species of regionally endemic birds, total population size will decline more rapidly than distribution area with increasing temperature. Two species showed comparable loss and one species exhibited a slower decline in population size with change in distribution area. Population size change relative to distribution area was greatest for those species that occurred at highest density in the middle of the gradient. The disproportional loss in population size reported here suggests that extinction risk associated with climate change can be more severe than that expected from decline in distribution area alone. Therefore, if we are to make accurate predictions of the impacts of climate change on the conservation status of individual species, it is crucial that we consider the spatial patterns of abundance within the distribution and not just the overall range of the species.