Urban ecosystems and the North American carbon cycle


Diane Pataki, e-mail: dpataki@uci.edu


Approximately 75–80% of the population of North America currently lives in urban areas as defined by national census bureaus, and urbanization is continuing to increase. Future trajectories of fossil fuel emissions are associated with a high degree of uncertainty; however, if the activities of urban residents and the rate of urban land conversion can be captured in urban systems models, plausible emissions scenarios from major cities may be generated. Integrated land use and transportation models that simulate energy use and traffic-related emissions are already in place in many North American cities. To these can be added a growing dataset of carbon gains and losses in vegetation and soils following urbanization, and a number of methods of validating urban carbon balance modeling, including top down atmospheric monitoring and urban ‘metabolic’ studies of whole ecosystem mass and energy flow. Here, we review the state of our understanding of urban areas as whole ecosystems with regard to carbon balance, including both drivers of fossil fuel emissions and carbon cycling in urban plants and soils. Interdisciplinary, whole-ecosystem studies of the socioeconomic and biophysical factors that influence urban carbon cycles in a range of cities may greatly contribute to improving scenarios of future carbon balance at both continental and global scales.