SEARCH

SEARCH BY CITATION

Keywords:

  • C sequestration;
  • crop residues;
  • rice-based cropping systems;
  • soil amendments;
  • subtropical India

Abstract

An understanding of the dynamics of carbon (C) stock in soils, as impacted by management strategies, is necessary to identify the pathways of C sequestration in soils and for maintaining soil organic C (SOC) at a level critical for upkeeping soil health and also for restraining global warming. This is more important in tropical and subtropical region where soils are inherently low in organic C content and the production system is fragile. We evaluated the long-term role of crop residue C inputs to soil in SOC sequestration and also the critical value of C inputs for maintenance of SOC across five different rice-based cropping systems and four soil management practices including a fallow (no cultivation since initiation of the experiments) using five long-term (7–36 years) fertility experiments in subtropical India. Cropping per se always caused a net depletion of SOC. Such depletion was inversely proportional to the amount of crop residue C incorporated into the soils (r=−0.92, P=0.001). Balanced fertilization with NPK, however, caused an enrichment (9.3–51.8% over the control) of SOC, its extent being influenced by the cropping systems. Long-term application of organic amendments (5–10 Mg ha−1 yr−1) through farmyard manure (FYM) or compost could increase SOC hardly by 10.7% constituting only 18% of the applied C, the rest getting lost through oxidation. The total quantity of soil C sequestered varied from −11.5 to 14.5 Mg C ha−1 and was linearly related (r2=0.40, P=0.005) with cumulative crop residue C inputs to the soils. On an average, the rate of its conversion to SOC came out to be 6.4%. This was more in presence of added organics (6.9%) than in its absence (4.2%). For sustenance of SOC level (zero change due to cropping) we found that a minimum quantity of 2.9 Mg C is required to be added per hectare per annum as inputs. The cropping systems and the management practices that could provide C input higher than the above critical level are likely to sustain the SOC level and maintain good soil health in the subtropical regions of the Indian subcontinent.