Get access
Advertisement

Climate envelope, life history traits and the resilience of birds facing global change

Authors

  • FRÉDÉRIC JIGUET,

    1. Centre de Recherches sur la Biologie des Populations d'Oiseaux, UMR 5173 Conservation des Espèces, Restauration et Suivi des Populations, CP 51, Muséum National d'Histoire Naturelle, 55 rue Buffon, F-75005 Paris, France,
    2. European Bird Census Council, c/o The Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK,
    Search for more papers by this author
  • ANNE-SOPHIE GADOT,

    1. Centre de Recherches sur la Biologie des Populations d'Oiseaux, UMR 5173 Conservation des Espèces, Restauration et Suivi des Populations, CP 51, Muséum National d'Histoire Naturelle, 55 rue Buffon, F-75005 Paris, France,
    Search for more papers by this author
  • ROMAIN JULLIARD,

    1. Centre de Recherches sur la Biologie des Populations d'Oiseaux, UMR 5173 Conservation des Espèces, Restauration et Suivi des Populations, CP 51, Muséum National d'Histoire Naturelle, 55 rue Buffon, F-75005 Paris, France,
    Search for more papers by this author
  • STUART E. NEWSON,

    1. European Bird Census Council, c/o The Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK,
    2. British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
    Search for more papers by this author
  • DENIS COUVET

    1. Centre de Recherches sur la Biologie des Populations d'Oiseaux, UMR 5173 Conservation des Espèces, Restauration et Suivi des Populations, CP 51, Muséum National d'Histoire Naturelle, 55 rue Buffon, F-75005 Paris, France,
    Search for more papers by this author

Frédéric Jiguet, CRBPO, 55 rue Buffon, F-75005 Paris, France, tel. +33 1 40 79 30 80, fax +33 1 40 79 38 35, e-mail: fjiguet@mnhn.fr

Abstract

Few studies have examined how life history traits and the climate envelope influence the ability of species to respond to climate change and habitat degradation. In this study, we test whether 18 species-specific variables, related to the climate envelope, ecological envelope and life history, could predict recent population trends (over 17 years) of 71 common breeding bird species in France. Habitat specialists were declining at a much higher rate than generalists, a sign that habitat quality is decreasing globally. The lower the thermal maximum (temperature at the hot edge of the climate envelope), the more negative are the population trends and the less tolerant these species are climate warming, regardless of the thermal range over which these species occur. The life history trait ‘the number of broods per year’ was positively related to recent trends, suggesting that single-brooded species might be more sensitive to advances in food peak due to climate change, as it increases the risk of mistiming their single-breeding event. Annual fecundity explained long-term declines, as it is a good proxy for most other demographic rates, with shorter-lived species being more sensitive to global change: individuals of species with higher fecundity might have too short a life to learn to adapt to directional changes in their environment. Finally, there was evidence that natal dispersal was a predictor of recent trends, with species with high natal dispersal experiencing smaller population declines than species with low natal dispersal. This is expected if the higher the natal dispersal, the larger the ability to shift spatially when facing changes in local habitat or climate, in order to track optimal conditions and adapt to global change. Identifying decline-promoting factors allow us to infer mechanisms responsible for observed declines in wild bird populations facing global change, and by doing so allow for a more pre-emptive approach to conservation planning.

Get access to the full text of this article

Ancillary