SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Jia GUO, Ming-qian ZHANG, Xiao-wen WANG, Wei-jian ZHANG, A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains, Journal of Integrative Agriculture, 2015, 14, 1, 50

    CrossRef

  2. 2
    Saurav Saha, Vinay Kumar Sehgal, Debasish Chakraborty, Madan Pal, Atmospheric carbon dioxide enrichment induced modifications in canopy radiation utilization, growth and yield of chickpea [Cicer arietinum L.)], Agricultural and Forest Meteorology, 2015, 202, 102

    CrossRef

  3. 3
    D. J. Pilbeam, Breeding crops for improved mineral nutrition under climate change conditions, Journal of Experimental Botany, 2015,

    CrossRef

  4. 4
    Håkan Pleijel, Petra Högy, CO2 dose–response functions for wheat grain, protein and mineral yield based on FACE and open-top chamber experiments, Environmental Pollution, 2015, 198, 70

    CrossRef

  5. 5
    Robinson W. Fulweiler, Timothy J. Maguire, Joanna C. Carey, Adrien C. Finzi, Does elevated CO2 alter silica uptake in trees?, Frontiers in Plant Science, 2015, 5,

    CrossRef

  6. 6
    Andreas Pacholski, Remigius Manderscheid, Hans-Joachim Weigel, Effects of free air CO2 enrichment on root growth of barley, sugar beet and wheat grown in a rotation under different nitrogen supply, European Journal of Agronomy, 2015, 63, 36

    CrossRef

  7. 7
    Martin Erbs, Remy Manderscheid, Liane Hüther, Anke Schenderlein, Herbert Wieser, Sven Dänicke, Hans-Joachim Weigel, Free-air CO2 enrichment modifies maize quality only under drought stress, Agronomy for Sustainable Development, 2015, 35, 1, 203

    CrossRef

  8. 8
    David Raubenheimer, Gabriel E. Machovsky-Capuska, Alison K. Gosby, Stephen Simpson, Nutritional ecology of obesity: from humans to companion animals, British Journal of Nutrition, 2015, 113, S1, S26

    CrossRef

  9. 9
    Peter W. Tait, A critical decade for public health: responsibility for energy transitions, Australian and New Zealand Journal of Public Health, 2014, 38, 1
  10. 10
    Philip K. Thornton, Mario Herrero, Climate change adaptation in mixed crop–livestock systems in developing countries, Global Food Security, 2014, 3, 2, 99

    CrossRef

  11. 11
    Behrooz Darbani, C. Neal Stewart, Shahin Noeparvar, Søren Borg, Correction of gene expression data: Performance-dependency on inter-replicate and inter-treatment biases, Journal of Biotechnology, 2014, 188, 100

    CrossRef

  12. 12
    K. Chakraborty, D. Bhaduri, D. C. Uprety, A. K. Patra, Differential Response of Plant and Soil Processes Under Climate Change: A Mini-review on Recent Understandings, Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2014, 84, 2, 201

    CrossRef

  13. 13
    V. S. John Sunoj, S. Naresh Kumar, K. S. Muralikrishna, Effect of elevated CO2 and temperature on oxidative stress and antioxidant enzymes activity in coconut (Cocosnucifera L.) seedlings, Indian Journal of Plant Physiology, 2014, 19, 4, 382

    CrossRef

  14. 14
    Yunxia Wang, Qiling Song, Michael Frei, Zaisheng Shao, Lianxin Yang, Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice, Environmental Pollution, 2014, 189, 9

    CrossRef

  15. 15
    Xingyu Hao, Ji Gao, Xue Han, Zhanyun Ma, Andrew Merchant, Hui Ju, Ping Li, Wanshen Yang, Zhiqiang Gao, Erda Lin, Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max (L.) Merr), Agriculture, Ecosystems & Environment, 2014, 192, 80

    CrossRef

  16. 16
    J.F. Panozzo, C.K. Walker, D.L. Partington, N.C. Neumann, M. Tausz, S. Seneweera, G.J. Fitzgerald, Elevated carbon dioxide changes grain protein concentration and composition and compromises baking quality. A FACE study, Journal of Cereal Science, 2014, 60, 3, 461

    CrossRef

  17. 17
    Nimesha Fernando, Joe Panozzo, Michael Tausz, Robert M. Norton, Nathan Neumann, Glenn J. Fitzgerald, Saman Seneweera, Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions, Agriculture, Ecosystems & Environment, 2014, 185, 24

    CrossRef

  18. 18
    Delphine Deryng, Declan Conway, Navin Ramankutty, Jeff Price, Rachel Warren, Global crop yield response to extreme heat stress under multiple climate change futures, Environmental Research Letters, 2014, 9, 3, 034011

    CrossRef

  19. 19
    Yasuhiro Usui, Hidemitsu Sakai, Takeshi Tokida, Hirofumi Nakamura, Hiroshi Nakagawa, Toshihiro Hasegawa, Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment, Rice, 2014, 7, 1, 6

    CrossRef

  20. 20
    Irakli Loladze, Hidden shift of the ionome of plants exposed to elevated CO2depletes minerals at the base of human nutrition, eLife, 2014, 3,

    CrossRef

  21. 21
    Madan Pal, Ashish K. Chaturvedi, Sunil K. Pandey, Rajiv N. Bahuguna, Sangeeta Khetarpal, Anjali Anand, Rising atmospheric CO2 may affect oil quality and seed yield of sunflower (Helianthus annus L.), Acta Physiologiae Plantarum, 2014, 36, 11, 2853

    CrossRef

  22. 22
    James H. Houx III, William J. Wiebold, Felix B. Fritschi, Rotation and tillage affect soybean grain composition, yield, and nutrient removal, Field Crops Research, 2014, 164, 12

    CrossRef

  23. 23
    Charles Marty, Hormoz BassiriRad, Seed germination and rising atmospheric CO2 concentration: a meta-analysis of parental and direct effects, New Phytologist, 2014, 202, 2
  24. 24
    Jonathan A. Patz, Maggie L. Grabow, Vijay S. Limaye, When It Rains, It Pours: Future Climate Extremes and Health, Annals of Global Health, 2014, 80, 4, 332

    CrossRef

  25. 25
    Christoph Müller, African Lessons on Climate Change Risks for Agriculture, Annual Review of Nutrition, 2013, 33, 1, 395

    CrossRef

  26. 26
    Usue Pérez-López, Anabel Robredo, Jon Miranda-Apodaca, Maite Lacuesta, Alberto Muñoz-Rueda, Amaia Mena-Petite, Carbon dioxide enrichment moderates salinity-induced effects on nitrogen acquisition and assimilation and their impact on growth in barley plants, Environmental and Experimental Botany, 2013, 87, 148

    CrossRef

  27. 27
    Naama Lang-Yona, Yishai Levin, Karen C. Dannemiller, Oded Yarden, Jordan Peccia, Yinon Rudich, Changes in atmospheric CO2 influence the allergenicity of Aspergillus fumigatus, Global Change Biology, 2013, 19, 8
  28. 28
    Isabel A. Abreu, Ana Paula Farinha, Sónia Negrão, Nuno Gonçalves, Cátia Fonseca, Mafalda Rodrigues, Rita Batista, Nelson J.M. Saibo, M. Margarida Oliveira, Coping with abiotic stress: Proteome changes for crop improvement, Journal of Proteomics, 2013, 93, 145

    CrossRef

  29. 29
    Roslyn Gleadow, Alexander Johnson, Michael Tausz, Crops for a future climate, Functional Plant Biology, 2013, 40, 2, iii

    CrossRef

  30. 30
    Liang Wang, Zhaozhong Feng, Jan K. Schjoerring, Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses, Agriculture, Ecosystems & Environment, 2013, 178, 57

    CrossRef

  31. 31
    Alexander A. T. Johnson, Enhancing the chelation capacity of rice to maximise iron and zinc concentrations under elevated atmospheric carbon dioxide, Functional Plant Biology, 2013, 40, 2, 101

    CrossRef

  32. 32
    P. Högy, M. Brunnbauer, P. Koehler, K. Schwadorf, J. Breuer, J. Franzaring, D. Zhunusbayeva, A. Fangmeier, Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment, Environmental and Experimental Botany, 2013, 88, 11

    CrossRef

  33. 33
    Myoung-Seok Lee, Byoung-Man Kang, Jeong-Eun Lee, Woo-Jung Choi, Jonghan Ko, Jae-Eul Choi, Kyu-Nam An, Oh-Do Kwon, Heung-Gyu Park, Hae-Ryong Shin, In Lee, Jong-Kook Kim, Han-Yong Kim, How do extreme wet events affect rice quality in a changing climate?, Agriculture, Ecosystems & Environment, 2013, 171, 47

    CrossRef

  34. 34
    S. S. Myers, L. Gaffikin, C. D. Golden, R. S. Ostfeld, K. H. Redford, T. H. Ricketts, W. R. Turner, S. A. Osofsky, Human health impacts of ecosystem alteration, Proceedings of the National Academy of Sciences, 2013, 110, 47, 18753

    CrossRef

  35. 35
    Mohammad Miransari, H. Riahi, F. Eftekhar, A. Minaie, D. L. Smith, Improving Soybean (Glycine max L.) N2 Fixation under Stress, Journal of Plant Growth Regulation, 2013, 32, 4, 909

    CrossRef

  36. 36
    Daniela Vetter, Gerta Rücker, Ilse Storch, Meta-analysis: A need for well-defined usage in ecology and conservation biology, Ecosphere, 2013, 4, 6, art74

    CrossRef

  37. 37
    Sharon B. Gray, Reid S. Strellner, Kannan K. Puthuval, Christopher Ng, Ross E. Shulman, Matthew H. Siebers, Alistair Rogers, Andrew D. B. Leakey, Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress, Functional Plant Biology, 2013, 40, 2, 137

    CrossRef

  38. 38
    Christian Biernath, Sebastian Bittner, Christian Klein, Sebastian Gayler, Rainer Hentschel, Peter Hoffmann, Petra Högy, Andreas Fangmeier, Eckart Priesack, Modeling acclimation of leaf photosynthesis to atmospheric CO2 enrichment, European Journal of Agronomy, 2013, 48, 74

    CrossRef

  39. 39
    Iker Aranjuelo, Pablo M. Cabrerizo, Cesar Arrese-Igor, Pedro M. Aparicio-Tejo, Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3− fertilization), Environmental and Experimental Botany, 2013, 95, 34

    CrossRef

  40. 40
    JUSTIN M. MCGRATH, DAVID B. LOBELL, Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations, Plant, Cell & Environment, 2013, 36, 3
  41. 41
    Shu Kee Lam, Deli Chen, Rob Norton, Roger Armstrong, The effect of elevated atmospheric carbon dioxide concentration on the contribution of residual legume and fertilizer nitrogen to a subsequent wheat crop, Plant and Soil, 2013, 364, 1-2, 81

    CrossRef

  42. 42
    G. Zhang, H. Sakai, T. Tokida, Y. Usui, C. Zhu, H. Nakamura, M. Yoshimoto, M. Fukuoka, K. Kobayashi, T. Hasegawa, The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.), Journal of Experimental Botany, 2013, 64, 11, 3179

    CrossRef

  43. 43
    Andaleeb Azam, Ikhtiar Khan, Abid Mahmood, Abdul Hameed, Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide, Journal of the Science of Food and Agriculture, 2013, 93, 13
  44. 44
    D.R. Taub, X. Wang, Climate Vulnerability, 2013,

    CrossRef

  45. 45
    Sangam Dwivedi, Kanwar Sahrawat, Hari Upadhyaya, Rodomiro Ortiz, 2013,

    CrossRef

  46. 46
    J. Franzaring, G. Gensheimer, S. Weller, I. Schmid, A. Fangmeier, Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO2, Environmental and Experimental Botany, 2012, 83, 12

    CrossRef

  47. 47
    David M. Rosenthal, Rebecca A. Slattery, Rebecca E. Miller, Aleel K. Grennan, Timothy R. Cavagnaro, Claude M. Fauquet, Roslyn M. Gleadow, Donald R. Ort, Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels, Global Change Biology, 2012, 18, 8
  48. 48
    Sonja J. Vermeulen, Bruce M. Campbell, John S.I. Ingram, Climate Change and Food Systems, Annual Review of Environment and Resources, 2012, 37, 1, 195

    CrossRef

  49. 49
    Hans-Joachim Weigel, Remy Manderscheid, Crop growth responses to free air CO2 enrichment and nitrogen fertilization: Rotating barley, ryegrass, sugar beet and wheat, European Journal of Agronomy, 2012, 43, 97

    CrossRef

  50. 50
    Shu Kee Lam, Xue Han, Erda Lin, Rob Norton, Deli Chen, Does elevated atmospheric carbon dioxide concentration increase wheat nitrogen demand and recovery of nitrogen applied at stem elongation?, Agriculture, Ecosystems & Environment, 2012, 155, 142

    CrossRef

  51. 51
    Shu Kee Lam, Deli Chen, Rob Norton, Roger Armstrong, Does phosphorus stimulate the effect of elevated [CO2] on growth and symbiotic nitrogen fixation of grain and pasture legumes?, Crop and Pasture Science, 2012, 63, 1, 53

    CrossRef

  52. 52
    Birgit Meibaum, Susanne Riede, Bernd Schröder, Remy Manderscheid, Hans-Joachim Weigel, Gerhard Breves, Elevated CO2and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversityin vitro, Archives of Animal Nutrition, 2012, 66, 6, 473

    CrossRef

  53. 53
    A. D. B. Leakey, J. A. Lau, Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2], Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1588, 613

    CrossRef

  54. 54
    L. H. Ziska, J. A. Bunce, H. Shimono, D. R. Gealy, J. T. Baker, P. C. D. Newton, M. P. Reynolds, K. S. V. Jagadish, C. Zhu, M. Howden, L. T. Wilson, Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide, Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1745, 4097

    CrossRef

  55. 55
    P.A.J. Van Oort, B.G.H. Timmermans, H. Meinke, M.K. Van Ittersum, Key weather extremes affecting potato production in The Netherlands, European Journal of Agronomy, 2012, 37, 1, 11

    CrossRef

  56. 56
    Shu K. Lam, Deli Chen, Rob Norton, Roger Armstrong, Arvin R. Mosier, Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta-analysis, Global Change Biology, 2012, 18, 9
  57. 57
    Nimesha Fernando, Joe Panozzo, Michael Tausz, Robert Norton, Glenn Fitzgerald, Saman Seneweera, Rising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grain, Food Chemistry, 2012, 133, 4, 1307

    CrossRef

  58. 58
    Narendra K. Lenka, Rattan Lal, Soil-related Constraints to the Carbon Dioxide Fertilization Effect, Critical Reviews in Plant Sciences, 2012, 31, 4, 342

    CrossRef

  59. 59
    Ali Reza Amiri-Jami, Hussein Sadeghi, Mahmoud Shoor, The performance of Brevicoryne brassicae on ornamental cabbages grown in CO2-enriched atmospheres, Journal of Asia-Pacific Entomology, 2012, 15, 2, 249

    CrossRef

  60. 60
    Stephen P. Long, Virtual Special Issue on food security – greater than anticipated impacts of near-term global atmospheric change on rice and wheat, Global Change Biology, 2012, 18, 5
  61. 61
    Nimesha Fernando, Joe Panozzo, Michael Tausz, Robert M. Norton, Glenn J. Fitzgerald, Samuel Myers, Cassandra Walker, James Stangoulis, Saman Seneweera, Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system, Journal of Cereal Science, 2012, 56, 3, 684

    CrossRef

  62. 62
    Håkan Pleijel, Johan Uddling, Yield vs. Quality trade-offs for wheat in response to carbon dioxide and ozone, Global Change Biology, 2012, 18, 2
  63. 63
    An-Cheol Chang, Ji-Young Choi, Shin-Woo Lee, Dong-Hern Kim, Shin-Chul Bae, Agricultural biotechnology: Opportunities and challenges associated with climate change, Journal of Plant Biotechnology, 2011, 38, 2, 117

    CrossRef

  64. 64
    Aaron S Bernstein, Samuel S Myers, Climate change and childrenʼs health, Current Opinion in Pediatrics, 2011, 23, 2, 221

    CrossRef

  65. 65
    K. Hikosaka, T. Kinugasa, S. Oikawa, Y. Onoda, T. Hirose, Effects of elevated CO2 concentration on seed production in C3 annual plants, Journal of Experimental Botany, 2011, 62, 4, 1523

    CrossRef

  66. 66
    Brian A. Schubert, A. Hope Jahren, Fertilization trajectory of the root crop Raphanus sativus across atmospheric pCO2 estimates of the next 300 years, Agriculture, Ecosystems & Environment, 2011, 140, 1-2, 174

    CrossRef

  67. 67
    Helmut Haberl, Karl-Heinz Erb, Fridolin Krausmann, Alberte Bondeau, Christian Lauk, Christoph Müller, Christoph Plutzar, Julia K. Steinberger, Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields, Biomass and Bioenergy, 2011, 35, 12, 4753

    CrossRef

  68. 68
    J. Franzaring, S. Weller, I. Schmid, A. Fangmeier, Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2, Environmental and Experimental Botany, 2011, 72, 2, 284

    CrossRef

  69. 69
    T. R. Cavagnaro, R. M. Gleadow, R. E. Miller, Plant nutrient acquisition and utilisation in a high carbon dioxide world, Functional Plant Biology, 2011, 38, 2, 87

    CrossRef

  70. 70
    Yunxia Wang, Michael Frei, Stressed food – The impact of abiotic environmental stresses on crop quality, Agriculture, Ecosystems & Environment, 2011, 141, 3-4, 271

    CrossRef

  71. 71
    Yunxia Wang, Michael Frei, Qiling Song, Lianxin Yang, The impact of atmospheric CO2 concentration enrichment on rice quality – A research review, Acta Ecologica Sinica, 2011, 31, 6, 277

    CrossRef

  72. 72
    Philippe Roudier, Benjamin Sultan, Philippe Quirion, Alexis Berg, The impact of future climate change on West African crop yields: What does the recent literature say?, Global Environmental Change, 2011, 21, 3, 1073

    CrossRef

  73. 73
    J. J. Elser, W. F. Fagan, A. J. Kerkhoff, N. G. Swenson, B. J. Enquist, Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change, New Phytologist, 2010, 186, 3
  74. 74
    Doyle McKey, Timothy R. Cavagnaro, Julie Cliff, Roslyn Gleadow, Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change, Chemoecology, 2010, 20, 2, 109

    CrossRef

  75. You have free access to this content75
    Jin Yin, Yucheng Sun, Gang Wu, Feng Ge, Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera, Entomologia Experimentalis et Applicata, 2010, 136, 1
  76. 76
    Julie Wolf, Nichole R. O’Neill, Christine A. Rogers, Michael L. Muilenberg, Lewis H. Ziska, Elevated Atmospheric Carbon Dioxide Concentrations Amplify Alternaria alternata Sporulation and Total Antigen Production, Environmental Health Perspectives, 2010, 118, 9, 1223

    CrossRef

  77. 77
    Thulasi Viswanath, Deo Pal, T.J. Purakayastha, Elevated CO2 reduces rate of decomposition of rice and wheat residues in soil, Agriculture, Ecosystems & Environment, 2010, 139, 4, 557

    CrossRef

  78. 78
    Ron Mittler, Eduardo Blumwald, Genetic Engineering for Modern Agriculture: Challenges and Perspectives, Annual Review of Plant Biology, 2010, 61, 1, 443

    CrossRef

  79. 79
    Fábio M. DaMatta, Adriana Grandis, Bruna C. Arenque, Marcos S. Buckeridge, Impacts of climate changes on crop physiology and food quality, Food Research International, 2010, 43, 7, 1814

    CrossRef

  80. 80
    Shimpei Oikawa, Kay-May Miyagi, Kouki Hikosaka, Masumi Okada, Toshinori Matsunami, Makie Kokubun, Toshihiko Kinugasa, Tadaki Hirose, Interactions between elevated CO2 and N2-fixation determine soybean yield—a test using a non-nodulated mutant, Plant and Soil, 2010, 330, 1-2, 163

    CrossRef

  81. 81
    Zhaozhong Feng, Kazuhiko Kobayashi, Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis, Atmospheric Environment, 2009, 43, 8, 1510

    CrossRef

  82. 82
    P. Högy, A. Fangmeier, Atmospheric CO2 enrichment affects potatoes: 2. Tuber quality traits, European Journal of Agronomy, 2009, 30, 2, 85

    CrossRef

  83. 83
    P. Högy, C. Zörb, G. Langenkämper, T. Betsche, A. Fangmeier, Atmospheric CO2 enrichment changes the wheat grain proteome, Journal of Cereal Science, 2009, 50, 2, 248

    CrossRef

  84. 84
    Roslyn M. Gleadow, Everard J. Edwards, John R. Evans, Changes in Nutritional Value of Cyanogenic Trifolium repens Grown at Elevated Atmospheric CO2, Journal of Chemical Ecology, 2009, 35, 4, 476

    CrossRef

  85. You have free access to this content85
    P. Högy, H. Wieser, P. Köhler, K. Schwadorf, J. Breuer, J. Franzaring, R. Muntifering, A. Fangmeier, Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment, Plant Biology, 2009, 11,
  86. 86
    Roslyn M. Gleadow, John R. Evans, Stephanie McCaffery, Timothy R. Cavagnaro, Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2, Plant Biology, 2009, 11,
  87. 87
    Susan M. Natali, Sergio A. Sañudo-Wilhelmy, Manuel T. Lerdau, Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals, Ecosystems, 2009, 12, 5, 715

    CrossRef

  88. 88
    Håkan Pleijel, Helena Danielsson, Yield dilution of grain Zn in wheat grown in open-top chamber experiments with elevated CO2 and O3 exposure, Journal of Cereal Science, 2009, 50, 2, 278

    CrossRef

  89. 89
    Michael E. St. Louis, Jeremy J. Hess, Climate Change, American Journal of Preventive Medicine, 2008, 35, 5, 527

    CrossRef

  90. You have free access to this content90
    Daniel R. Taub, Xianzhong Wang, Why are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the Hypotheses, Journal of Integrative Plant Biology, 2008, 50, 11
  91. 91
    Sangam L. Dwivedi, Kanwar L. Sahrawat, Kedar N. Rai, Matthew W. Blair, Meike S. Andersson, Wolfgang Pfeiffer, Nutritionally Enhanced Staple Food Crops,
  92. 92
    Jinyoung Y Barnaby, Lewis H Ziska, Plant Responses to Elevated CO2, eLS,
  93. 93
    S. Seneweera, R. M. Norton, Plant Responses to Increased Carbon Dioxide,
  94. 94
    Adisa Azapagic, Heinz Stichnothe, Namy Espinoza-Orias, Sustainability Issues in Food Provisioning Systems,