Get access

Combined effects of elevated temperatures and reduced leaf litter quality on the life-history parameters of a saprophagous macroarthropod


Jean-Francois David, tel. +33 467 61 32 61, fax +33 467 41 21 38, e-mail:


Because soil macroinvertebrates strongly modify decomposition processes, it is important to know how their abundance will respond to global change. We investigated in laboratory microcosms, the effects of elevated temperatures and reduced leaf litter quality on the life-history traits of a saprophagous macroarthropod (development time, growth, survival and reproduction). Millipedes (Polydesmus angustus) from an Atlantic temperate forest were reared throughout their life cycle (≥16 months) under two temperature regimes differing on average by 3.3 °C; in a factorial design, they were fed either on Atlantic leaf litter or on Mediterranean leaf litter with a higher C : N ratio; humidity was consistently high. The components of the population growth rate (r) were affected positively by the temperature rise and negatively by the switch from Atlantic to Mediterranean leaf litter. When both treatments were combined, litter effects offset temperature effects. These results show that the short-term response of saprophagous macroarthropods to warming is positive but depends on the availability of high-quality litter, which is difficult to predict in the global change context. In a parallel experiment, conspecific millipedes from a Mediterranean population, which have evolved for a long time in a warmer climate and on poor-quality litter, were reared at elevated temperatures on Mediterranean leaf litter. All components of r were higher than in the Atlantic population under the same conditions. This suggests that in the longer term, macroarthropods can overcome detrimental trophic interactions. Based on our study and the literature, we conclude that for decades the positive effects of warming on saprophagous macrofauna should exceed the negative effects of changes in litter quality. The abundance of those organisms in temperate forests could increase, which is confirmed by latitudinal patterns in Europe. Studies aimed at predicting the impacts of global change on decomposition will need to consider interactions with soil macroinvertebrates.