Get access

Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment


Jiahong Li, tel. +1 321 861 3223, fax +1 321 861 2954, e-mail:


Wetlands evapotranspire more water than other ecosystems, including agricultural, forest and grassland ecosystems. However, the effects of elevated atmospheric carbon dioxide (CO2) concentration (Ca) on wetland evapotranspiration (ET) are largely unknown. Here, we present data on 12 years of measurements of ET, net ecosystem CO2 exchange (NEE), and ecosystem water use efficiency (EWUE, i.e. NEE/ET) at 13:00–15:00 hours in July and August for a Scirpus olneyi (C3 sedge) community and a Spartina patens (C4 grass) community exposed to ambient and elevated (ambient+340 μmol mol−1) Ca in a Chesapeake Bay wetland. Although a decrease in stomatal conductance at elevated Ca in the S. olneyi community was counteracted by an increase in leaf area index (LAI) to some extend, ET was still reduced by 19% on average over 12 years. In the S. patens community, LAI was not affected by elevated Ca and the reduction of ET was 34%, larger than in the S. olneyi community. For both communities, the relative reduction in ET by elevated Ca was directly proportional to precipitation due to a larger reduction in stomatal conductance in the control plants as precipitation decreased. NEE was stimulated about 36% at elevated Ca in the S. olneyi community but was not significantly affected by elevated Ca in S. patens community. A negative correlation between salinity and precipitation observed in the field indicated that precipitation affected ET through altered salinity and interacted with growth Ca. This proposed mechanism was supported by a greenhouse study that showed a greater Ca effect on ET in controlled low salinity conditions compared with high salinity. In spite of the differences between the two communities in their responses to elevated Ca, EWUE was increased about 83% by elevated Ca in both the S. olneyi and S. patens communities. These findings suggest that rising Ca could have significant impacts on the hydrologic cycles of coastal wetlands.