Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter


Susanna Rutledge, tel. +64 7 838 4466, extn. 6229, fax +64 7 856 0115, e-mail:


CO2 production in terrestrial ecosystems is generally assumed to be solely biologically driven while the role of abiotic processes has been largely overlooked. In addition to microbial decomposition, photodegradation – the direct breakdown of organic matter (OM) by solar irradiance – has been found to contribute to litter mass loss in dry ecosystems. Previous small-scale studies have shown that litter degradation by irradiance is accompanied by emissions of CO2. However, the contribution of photodegradation to total CO2 losses at ecosystems scales is unknown. This study determined the proportion of the total CO2 losses caused by photodegradation in two ecosystems: a bare peatland in New Zealand and a seasonally dry grassland in California. The direct effect of solar irradiance on CO2 production was examined by comparing daytime CO2 fluxes measured using eddy covariance (EC) systems with simultaneous measurements made using an opaque chamber and the soil CO2 gradient technique, and with night-time EC measurements under the same soil temperature and moisture conditions. In addition, a transparent chamber was used to directly measure CO2 fluxes from OM caused by solar irradiance. Photodegradation contributed 19% of the annual CO2 flux from the peatland and almost 60% of the dry season CO2 flux from the grassland, and up to 62% and 92% of the summer mid-day CO2 fluxes, respectively. Our results suggest that photodegradation may be important in a wide range of ecosystems with exposed OM. Furthermore, the practice of partitioning daytime ecosystem CO2 exchange into its gross components by assuming that total daytime CO2 losses can be approximated using estimates of biological respiration alone may be in error. To obtain robust estimates of global ecosystem–atmosphere carbon transfers, the contribution of photodegradation to OM decomposition must be quantified for other ecosystems and the results incorporated into coupled carbon–climate models.