Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem


Luis Matías, tel. +349 582 43241, fax +349 582 46166, e-mail:


Changes in rainfall availability will alter soil-nutrient availability under a climate-change scenario. However, studies have usually analyzed the effect of either drier or wetter soil conditions, despite the fact that both possibilities will coexist in many climatic regions of the world. Furthermore, its effect may vary across the different habitats of the ecosystem. We experimentally investigated the effect of three contrasting climatic scenarios on different carbon (C), nitrogen (N), and phosphorus (P) fractions in soil and microbial compartments among three characteristic habitats in a Mediterranean-type ecosystem: forest, shrubland, and open areas. The climatic scenarios were dry summers, according to the 30% summer rainfall reduction projected in the Mediterranean; wet summer, simulating summer storms to reach the maximum historical records in the study area; and current climatic conditions (control). Sampling was replicated during two seasons (spring and summer) and 2 years. The climatic scenario did not affect the nutrient content in the litter layer. However, soil and microbial nutrients varied among seasons, habitats, and climatic scenarios. Soil-nutrient fractions increased with lower soil-moisture conditions (dry scenario and summer), whereas microbial nutrients increased under the wet summer scenario and spring. This pattern was consistent both studied years, although it was modulated by habitat, differences being lower with denser plant cover. Holm oak seedlings, used as live control of the experiment, tended to increase their N and P content (although not significantly) with water availability. Thus, the results support the idea that higher rainfall boosts microbial and plant-nutrient uptake, and hence nutrient cycling. By contrast, a rainfall reduction leads to an accumulation of nutrients in the soil, increasing the risk of nutrient loss by leaching or erosion. These results show that the projected climate change will have significant effects on nutrient cycles, and therefore will have important implications on the ecosystem functioning.