SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Stephanie Hans, Sandra Fehsenfeld, Jason R. Treberg, Dirk Weihrauch, Acid–base regulation in the Dungeness crab (Metacarcinus magister), Marine Biology, 2014, 161, 5, 1179

    CrossRef

  2. 2
    Natasha Jensen, Richard M. Allen, Dustin J. Marshall, Adaptive maternal and paternal effects: gamete plasticity in response to parental stress, Functional Ecology, 2014, 28, 3
  3. 3
    Philip L. Munday, Alistair J. Cheal, Danielle L. Dixson, Jodie L. Rummer, Katharina E. Fabricius, Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps, Nature Climate Change, 2014, 4, 6, 487

    CrossRef

  4. 4
    Jeannine Fischer, Nicole E. Phillips, Carry-over effects of multiple stressors on benthic embryos are mediated by larval exposure to elevated UVB and temperature, Global Change Biology, 2014, 20, 7
  5. 5
    Thorsten B. H. Reusch, Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants, Evolutionary Applications, 2014, 7, 1
  6. 6
    Hong D. Nguyen, Maria Byrne, Early benthic juvenile Parvulastra exigua (Asteroidea) are tolerant to extreme acidification and warming in its intertidal habitat, Journal of Experimental Marine Biology and Ecology, 2014, 453, 36

    CrossRef

  7. 7
    Jennifer M. Sunday, Piero Calosi, Sam Dupont, Philip L. Munday, Jonathon H. Stillman, Thorsten B.H. Reusch, Evolution in an acidifying ocean, Trends in Ecology & Evolution, 2014, 29, 2, 117

    CrossRef

  8. 8
    C.C. Suckling, M.S. Clark, L.S. Peck, E.J. Cook, Experimental influence of pH on the early life-stages of sea urchins I: different rates of introduction give rise to different responses, Invertebrate Reproduction & Development, 2014, 58, 2, 148

    CrossRef

  9. 9
    Coleen C. Suckling, Melody S. Clark, Christine Beveridge, Lars Brunner, Adam D. Hughes, Elizabeth M. Harper, Elizabeth J. Cook, Andrew J. Davies, Lloyd S. Peck, Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses, Invertebrate Reproduction & Development, 2014, 58, 3, 161

    CrossRef

  10. 10
    Christian Pansch, Iris Schaub, Jonathan Havenhand, Martin Wahl, Habitat traits and food availability determine the response of marine invertebrates to ocean acidification, Global Change Biology, 2014, 20, 3
  11. 11
    Hannes Baumann, Ryan B. Wallace, Tristen Tagliaferri, Christopher J. Gobler, Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales, Estuaries and Coasts, 2014,

    CrossRef

  12. 12
    Mary A. Sewell, Russell B. Millar, Pauline C. Yu, Lydia Kapsenberg, Gretchen E. Hofmann, Ocean Acidification and Fertilization in the Antarctic Sea UrchinSterechinus neumayeri: the Importance of Polyspermy, Environmental Science & Technology, 2014, 48, 1, 713

    CrossRef

  13. 13
    CS Murray, A Malvezzi, CJ Gobler, H Baumann, Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish, Marine Ecology Progress Series, 2014, 504, 1

    CrossRef

  14. 14
    Andrea Y. Frommel, Rommel Maneja, David Lowe, Christine K. Pascoe, Audrey J. Geffen, Arild Folkvord, Uwe Piatkowski, Catriona Clemmesen, Organ damage in Atlantic herring larvae as a result of ocean acidification, Ecological Applications, 2014, 24, 5, 1131

    CrossRef

  15. 15
    B. J. M. Allan, G. M. Miller, M. I. McCormick, P. Domenici, P. L. Munday, Parental effects improve escape performance of juvenile reef fish in a high-CO2 world, Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 1777, 20132179

    CrossRef

  16. 16
    G. Cripps, P. Lindeque, K. Flynn, Parental exposure to elevated pCO2 influences the reproductive success of copepods, Journal of Plankton Research, 2014,

    CrossRef

  17. 17
    M Schiffer, L Harms, HO Pörtner, FC Mark, D Storch, Pre-hatching seawater pCO2 affects development and survival of zoea stages of Arctic spider crab Hyas araneus, Marine Ecology Progress Series, 2014, 501, 127

    CrossRef

  18. 18
    Valter Amaral, Henrique N. Cabral, Melanie J. Bishop, Prior exposure influences the behavioural avoidance by an intertidal gastropod, Bembicium auratum, of acidified waters, Estuarine, Coastal and Shelf Science, 2014, 136, 82

    CrossRef

  19. 19
    S. L. Applebaum, T.- C. F. Pan, D. Hedgecock, D. T. Manahan, Separating the Nature and Nurture of the Allocation of Energy in Response to Global Change, Integrative and Comparative Biology, 2014, 54, 2, 284

    CrossRef

  20. 20
    Lisa N. S. Shama, Anneli Strobel, Felix C. Mark, K. Mathias Wegner, Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean, Functional Ecology, 2014, 28, 4
  21. 21
    Franziska M. Schade, Catriona Clemmesen, K. Mathias Wegner, Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus), Marine Biology, 2014, 161, 7, 1667

    CrossRef

  22. 22
    George G. Waldbusser, Elizabeth L. Brunner, Brian A. Haley, Burke Hales, Christopher J. Langdon, Frederick G. Prahl, A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity, Geophysical Research Letters, 2013, 40, 10
  23. You have free access to this content23
    Morgan W. Kelly, Gretchen E. Hofmann, Adaptation and the physiology of ocean acidification, Functional Ecology, 2013, 27, 4
  24. 24
    Paul McElhany, D. Shallin Busch, Appropriate pCO2 treatments in ocean acidification experiments, Marine Biology, 2013, 160, 8, 1807

    CrossRef

  25. 25
    Jiaqi Li, Zengjie Jiang, Jihong Zhang, Jian-Wen Qiu, Meirong Du, Dapeng Bian, Jianguang Fang, Detrimental effects of reduced seawater pH on the early development of the Pacific abalone, Marine Pollution Bulletin, 2013, 74, 1, 320

    CrossRef

  26. 26
    S. Uthicke, N. Soars, S. Foo, M. Byrne, Effects of elevated pCO2 and the effect of parent acclimation on development in the tropical Pacific sea urchin Echinometra mathaei, Marine Biology, 2013, 160, 8, 1913

    CrossRef

  27. 27
    T. P. Hurst, E. R. Fernandez, J. T. Mathis, Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma), ICES Journal of Marine Science, 2013, 70, 4, 812

    CrossRef

  28. 28
    M Byrne, M Gonzalez-Bernat, S Doo, S Foo, N Soars, M Lamare, Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis, Marine Ecology Progress Series, 2013, 473, 235

    CrossRef

  29. 29
    P. Barros, P. Sobral, P. Range, L. Chícharo, D. Matias, Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas, Journal of Experimental Marine Biology and Ecology, 2013, 440, 200

    CrossRef

  30. 30
    R. Dineshram, V. Thiyagarajan, Ackley Lane, Yu Ziniu, Shu Xiao, Priscilla T. Y. Leung, Elevated CO2 alters larval proteome and its phosphorylation status in the commercial oyster, Crassostrea hongkongensis, Marine Biology, 2013, 160, 8, 2189

    CrossRef

  31. 31
    Emma Timmins-Schiffman, Michael J. O’Donnell, Carolyn S. Friedman, Steven B. Roberts, Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas, Marine Biology, 2013, 160, 8, 1973

    CrossRef

  32. 32
    Maj Arnberg, Piero Calosi, John I. Spicer, Anne Helene S. Tandberg, Marianne Nilsen, Stig Westerlund, Renée K. Bechmann, Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of northern shrimp (Pandalus borealis) larvae, Marine Biology, 2013, 160, 8, 2037

    CrossRef

  33. 33
    Hannah K. Styf, Helen Nilsson Sköld, Susanne P. Eriksson, Embryonic response to long-term exposure of the marine crustacean Nephrops norvegicus to ocean acidification and elevated temperature, Ecology and Evolution, 2013, 3, 15
  34. 34
    Jörn Thomsen, Isabel Casties, Christian Pansch, Arne Körtzinger, Frank Melzner, Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments, Global Change Biology, 2013, 19, 4
  35. 35
    Melody S. Clark, Michael A. S. Thorne, Ana Amaral, Florbela Vieira, Frederico M. Batista, João Reis, Deborah M. Power, Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas, Ecology and Evolution, 2013, 3, 10
  36. 36
    Kristy J. Kroeker, Rebecca L. Kordas, Ryan Crim, Iris E. Hendriks, Laura Ramajo, Gerald S. Singh, Carlos M. Duarte, Jean-Pierre Gattuso, Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Global Change Biology, 2013, 19, 6
  37. 37
    Trevor A. Branch, Bonnie M. DeJoseph, Liza J. Ray, Cherie A. Wagner, Impacts of ocean acidification on marine seafood, Trends in Ecology & Evolution, 2013, 28, 3, 178

    CrossRef

  38. 38
    Frédéric Gazeau, Laura M. Parker, Steeve Comeau, Jean-Pierre Gattuso, Wayne A. O’Connor, Sophie Martin, Hans-Otto Pörtner, Pauline M. Ross, Impacts of ocean acidification on marine shelled molluscs, Marine Biology, 2013, 160, 8, 2207

    CrossRef

  39. 39
    Annaliese Hettinger, Eric Sanford, Tessa M. Hill, Elizabeth A. Lenz, Ann D. Russell, Brian Gaylord, Larval carry-over effects from ocean acidification persist in the natural environment, Global Change Biology, 2013, 19, 11
  40. 40
    A Li, JMY Chiu, Latent effects of hypoxia on the gastropod Crepidula onyx, Marine Ecology Progress Series, 2013, 480, 145

    CrossRef

  41. 41
    S. Dupont, N. Dorey, M. Stumpp, F. Melzner, M. Thorndyke, Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis, Marine Biology, 2013, 160, 8, 1835

    CrossRef

  42. 42
    M. Byrne, R. Przeslawski, Multistressor Impacts of Warming and Acidification of the Ocean on Marine Invertebrates' Life Histories, Integrative and Comparative Biology, 2013, 53, 4, 582

    CrossRef

  43. 43
    Morgan W. Kelly, Jacqueline L. Padilla-Gamiño, Gretchen E. Hofmann, Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus, Global Change Biology, 2013, 19, 8
  44. 44
    Oona M. Lönnstedt, Philip L. Munday, Mark I. McCormick, Maud C. O. Ferrari, Douglas P. Chivers, Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated CO2 on fish?, Ecology and Evolution, 2013, 3, 10
  45. 45
    B. D. Russell, S. D. Connell, H. S. Findlay, K. Tait, S. Widdicombe, N. Mieszkowska, Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption, Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 1627, 20120438

    CrossRef

  46. 46
    Narimane Dorey, Frank Melzner, Sophie Martin, François Oberhänsli, Jean-Louis Teyssié, Paco Bustamante, Jean-Pierre Gattuso, Thomas Lacoue-Labarthe, Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis, Marine Biology, 2013, 160, 8, 2007

    CrossRef

  47. 47
    Maria Byrne, Shawna Foo, Natalie A. Soars, Kennedy D.L. Wolfe, Hong D. Nguyen, Natasha Hardy, Symon A. Dworjanyn, Ocean warming will mitigate the effects of acidification on calcifying sea urchin larvae (Heliocidaris tuberculata) from the Australian global warming hot spot, Journal of Experimental Marine Biology and Ecology, 2013, 448, 250

    CrossRef

  48. 48
    Philip L. Munday, Robert R. Warner, Keyne Monro, John M. Pandolfi, Dustin J. Marshall, Predicting evolutionary responses to climate change in the sea, Ecology Letters, 2013, 16, 12
  49. 49
    Laura Parker, Pauline Ross, Wayne O'Connor, Hans Pörtner, Elliot Scanes, John Wright, Predicting the Response of Molluscs to the Impact of Ocean Acidification, Biology, 2013, 2, 2, 651

    CrossRef

  50. 50
    Astrid C. Wittmann, Hans-O. Pörtner, Sensitivities of extant animal taxa to ocean acidification, Nature Climate Change, 2013, 3, 11, 995

    CrossRef

  51. 51
    Raphaël Billé, Ryan Kelly, Arne Biastoch, Ellycia Harrould-Kolieb, Dorothée Herr, Fortunat Joos, Kristy Kroeker, Dan Laffoley, Andreas Oschlies, Jean-Pierre Gattuso, Taking Action Against Ocean Acidification: A Review of Management and Policy Options, Environmental Management, 2013, 52, 4, 761

    CrossRef

  52. 52
    H. M. Putnam, A. B. Mayfield, T. Y. Fan, C. S. Chen, R. D. Gates, The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2, Marine Biology, 2013, 160, 8, 2157

    CrossRef

  53. 53
    M. Byrne, M. Lamare, D. Winter, S. A. Dworjanyn, S. Uthicke, The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles, Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 1627, 20120439

    CrossRef

  54. 54
    Nathalie Hilmi, Denis Allemand, Sam Dupont, Alain Safa, Gunnar Haraldsson, Paulo A. L. D. Nunes, Chris Moore, Caroline Hattam, Stéphanie Reynaud, Jason M. Hall-Spencer, Maoz Fine, Carol Turley, Ross Jeffree, James Orr, Philip L. Munday, Sarah R. Cooley, Towards improved socio-economic assessments of ocean acidification’s impacts, Marine Biology, 2013, 160, 8, 1773

    CrossRef

  55. 55
    Maria Byrne, Melanie A. Ho, Lucas Koleits, Casandra Price, Catherine K. King, Patti Virtue, Bronte Tilbrook, Miles Lamare, Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming, Global Change Biology, 2013, 19, 7
  56. 56
    Vengatesen Thiyagarajan, Ginger Wai Kuen Ko, Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressors, Aquaculture, 2012, 370-371, 90

    CrossRef

  57. 57
    Hong D. Nguyen, Steve S. Doo, Natalie A. Soars, Maria Byrne, Noncalcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar, Global Change Biology, 2012, 18, 8
  58. 58
    Gabrielle M. Miller, Sue-Ann Watson, Jennifer M. Donelson, Mark I. McCormick, Philip L. Munday, Parental environment mediates impacts of increased carbon dioxide on a coral reef fish, Nature Climate Change, 2012, 2, 12, 858

    CrossRef

  59. 59
    Annaliese Hettinger, Eric Sanford, Tessa M. Hill, Ann D. Russell, Kirk N. S. Sato, Jennifer Hoey, Margaux Forsch, Heather N. Page, Brian Gaylord, Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster, Ecology, 2012, 93, 12, 2758

    CrossRef

  60. 60
    Pauline M Ross, Laura Parker, Wayne A O'Connor, Wildlife and Climate Change, 2012,

    CrossRef