Get access

Immigrants and refugees: the importance of dispersal in mediating biotic attrition under climate change

Authors

  • Alex S. Anderson,

    Corresponding author
    • Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
    Search for more papers by this author
  • April E. Reside,

    1. Climate Adaptation Flagship and Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Townsville, Queensland, Australia
    Search for more papers by this author
  • Jeremy J. VanDerWal,

    1. Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
    Search for more papers by this author
  • Luke P. Shoo,

    1. Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
    2. School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
    Search for more papers by this author
  • Richard G. Pearson,

    1. Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
    Search for more papers by this author
  • Stephen E. Williams

    1. Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
    Search for more papers by this author

Correspondence: Alex S. Anderson, tel. + 61 7 4781 5552, fax + 61 7 4781 1570, e-mail: alexander.anderson@my.jcu.edu.au

Abstract

Montane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north-eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.

Ancillary