SEARCH

SEARCH BY CITATION

Keywords:

  • abundance;
  • distribution changes;
  • habitat loss and degradation;
  • Lepidoptera;
  • range margins

Abstract

Many species are expanding at their leading-edge range boundaries in response to climate warming. Species are known to respond individualistically to climate change, but there has been little consideration of whether responses are consistent over time. We compared responses of 37 southerly distributed British butterflies over two study periods, first between 1970–1982 and 1995–1999 and then between 1995–1999 and 2005–2009, when mean annual temperature increased regionally by 0.03 °C yr−1 (a significant rate of increase) and 0.01 °C yr−1(a nonsignificant increase) respectively. Our study species might be expected to benefit from climate warming. We measured three responses to climate to investigate this; changes in range margin, distribution area and abundance. In general, the responses of species were inconsistent over time. Species that increased their distribution areas during the first period tended to do so again during the second period, but the relationship was weak. Changes in range margins and abundance were not consistent. In addition, only 5/37 species showed qualitatively similar responses in all three response variables over time (three species increased and two species declined in all variables in both periods). Overall rates of range expansion and distribution area change were significantly greater in the second study period, despite the lower rate of warming, perhaps due to species exploiting climate-distribution lags remaining from the earlier, warmer period. However, there was a significantly greater decline in abundance during the second study period, so range expansions northwards were not necessarily accompanied by increases in distribution area and/or abundance. Hence, species ranges have been thinning as they have expanded northwards. The idiosyncratic responses of these species likely reflect the balance of climatic and habitat drivers of species distribution and abundance changes.