• 1
    Reis-Filho JS, Simpson PT, Gale T, Lakhani SR. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol. Res. Pract. 2005; 201; 713725.
  • 2
    Lacroix M, Toillon RA, Leclercq G. Stable ‘portrait’ of breast tumors during progression: data from biology, pathology and genetics. Endocr. Relat. Cancer 2004; 11; 497522.
  • 3
    Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J. Pathol. 2005; 205; 248254.
  • 4
    Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406; 747752.
  • 5
    Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. U. S. A. 2001; 98; 1086910874.
  • 6
    Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. U. S. A. 2003; 100; 84188423.
  • 7
    Reis-Filho JS, Westbury C, Pierga JY. The impact of expression profiling on prognostic and predictive testing in breast cancer. J. Clin. Pathol. 2006; 59; 225231.
  • 8
    Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 2005; 23; 73507360.
  • 9
    Rouzier R, Perou CM, Symmans WF et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 2005; 11; 56785685.
  • 10
    Nielsen TO, Hsu FD, Jensen K et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 2004; 10; 53675374.
  • 11
    Van De Rijn M, Perou CM, Tibshirani R et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol. 2002; 161; 19911996.
  • 12
    Fulford LG, Reis-Filho JS, Ryder K et al. Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res. 2007; 9; R4.
  • 13
    Hicks DG, Short SM, Prescott NL et al. Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am. J. Surg. Pathol. 2006; 30; 10971104.
  • 14
    Carey LA, Dees EC, Sawyer L et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 2007; 13; 23292334.
  • 15
    Gusterson BA, Ross DT, Heath VJ, Stein T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 2005; 7; 143148.
  • 16
    Lakhani SR, O’Hare MJ. The mammary myoepithelial cell – Cinderella or ugly sister? Breast Cancer Res. 2001; 3; 14.
  • 17
    Page MJ, Amess B, Townsend RR et al. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl Acad. Sci. U. S. A. 1999; 96; 1258912594.
  • 18
    Jones C, Mackay A, Grigoriadis A et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res. 2004; 64; 30373045.
  • 19
    Matos I, Dufloth R, Alvarenga M, Zeferino LC, Schmitt F. p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch. 2005; 447; 688694.
  • 20
    Pinilla SM, Honrado E, Hardisson D, Benitez J, Palacios J. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res. Treat. 2006; 99; 8590.
  • 21
    Hu Z, Fan C, Oh DS et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006; 7; 96.
  • 22
    Abd El-Rehim DM, Ball G, Pinder SE et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int. J. Cancer 2005; 116; 340350.
  • 23
    Savage K, Leung S, Todd SK et al. Distribution and significance of Caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis. Breast Cancer Res. Treat. 2007; (epub ahead of print. doi: 10.1007/s10549-007-9718-1).
  • 24
    Calza S, Hall P, Auer G et al. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res. 2006; 8; R34.
  • 25
    Arriola E, Rodriguez-Pinilla SM, Lambros MB et al. Topoisomerase II alpha amplification may predict benefit from adjuvant anthracyclines in HER2 positive early breast cancer. Breast Cancer Res. Treat. 2007; (epub ahead of print. doi: 10.1007/s10549-006-9492-5).
  • 26
    Reis-Filho JS, Milanezi F, Carvalho S et al. Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res. 2005; 7; R1028R1035.
  • 27
    Reis-Filho JS, Milanezi F, Steele D et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology 2006; 49; 1021.
  • 28
    Santini D, Ceccarelli C, Taffurelli M, Pileri S, Marrano D. Differentiation pathways in primary invasive breast carcinoma as suggested by intermediate filament and biopathological marker expression. J. Pathol. 1996; 179; 386391.
  • 29
    Malzahn K, Mitze M, Thoenes M, Moll R. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch. 1998; 433; 119129.
  • 30
    Dairkee SH, Mayall BH, Smith HS, Hackett AJ. Monoclonal marker that predicts early recurrence of breast cancer. Lancet 1987; 1; 514.
  • 31
    Hamperl H. The myothelia (myoepithelial cells). Normal state; regressive changes; hyperplasia; tumors. Curr. Top. Pathol. 1970; 53; 161220.
  • 32
    Gould VE, Koukoulis GK, Jansson DS et al. Coexpression patterns of vimentin and glial filament protein with cytokeratins in the normal, hyperplastic, and neoplastic breast. Am. J. Pathol. 1990; 137; 11431155.
  • 33
    Raymond WA, Leong AS. Co-expression of cytokeratin and vimentin intermediate filament proteins in benign and neoplastic breast epithelium. J. Pathol. 1989; 157; 299306.
  • 34
    Sotiriou C, Neo SY, McShane LM et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. U. S. A. 2003; 100; 1039310398.
  • 35
    Fulford LG, Easton DF, Reis-Filho JS et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 2006; 49; 2234.
  • 36
    Lakhani SR, Reis-Filho JS, Fulford L et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin. Cancer Res. 2005; 11; 51755180.
  • 37
    Livasy CA, Karaca G, Nanda R et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod. Pathol. 2006; 19; 264271.
  • 38
    Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S. Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am. J. Surg. Pathol. 2000; 24; 197202.
  • 39
    Tsuda H, Takarabe T, Hasegawa T, Murata T, Hirohashi S. Myoepithelial differentiation in high-grade invasive ductal carcinomas with large central acellular zones. Hum. Pathol. 1999; 30; 11341139.
  • 40
    Jacquemier J, Padovani L, Rabayrol L et al. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J. Pathol. 2005; 207; 260268.
  • 41
    Vincent-Salomon A, Gruel N, Lucchesi C et al. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res. 2007; 9; R24.
  • 42
    Abd El-Rehim DM, Pinder SE, Paish CE et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J. Pathol. 2004; 203; 661671.
  • 43
    Fan C, Oh DS, Wessels L et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 2006; 355; 560569.
  • 44
    Jumppanen M, Gruvberger-Saal S, Kauraniemi P et al. Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res. 2007; 9; R16.
  • 45
    Rodriguez-Pinilla SM, Sarrio D, Honrado E et al. Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin. Cancer Res. 2006; 12; 15331539.
  • 46
    Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 2007; 13; 44294434.
  • 47
    Haffty BG, Yang Q, Reiss M et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol. 2006; 24; 56525657.
  • 48
    Rakha EA, El-Sayed ME, Green AR et al. Prognostic markers in triple-negative breast cancer. Cancer 2007; 109; 2532.
  • 49
    Tischkowitz M, Brunet JS, Begin LR et al. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 2007; 7; 134.
  • 50
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 2007; 109; 17211728.
  • 51
    Harris LN, Broadwater G, Lin NU et al. Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342. Breast Cancer Res. 2006; 8; R66.
  • 52
    Morris GJ, Naidu S, Topham AK et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and end results database. Cancer 2007; 110; 876884.
  • 53
    Turner NC, Reis-Filho JS, Russell AM et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 2007; 14; 21262132.
  • 54
    Rakha EA, Putti TC, Abd El-Rehim DM et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J. Pathol. 2006; 208; 495506.
  • 55
    Pia-Foschini M, Reis-Filho JS, Eusebi V, Lakhani SR. Salivary gland-like tumours of the breast: surgical and molecular pathology. J. Clin. Pathol. 2003; 56; 497506.
  • 56
    Foulkes WD, Metcalfe K, Hanna W et al. Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer 2003; 98; 15691577.
  • 57
    Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J. Clin. Oncol. 2007 (in press).
  • 58
    Penland SK, Keku TO, Torrice C et al. RNA expression analysis of formalin-fixed paraffin-embedded tumors. Lab. Invest. 2007; 87; 383391.
  • 59
    Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer 2004; 4; 814819.
  • 60
    Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 2006; 25; 58465853.
  • 61
    Chabalier C, Lamare C, Racca C et al. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle 2006; 5; 10011007.
  • 62
    Gilmore PM, McCabe N, Quinn JE et al. BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase 3. Cancer Res. 2004; 64; 41484154.
  • 63
    Rottenberg S, Nygren AO, Pajic M et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc. Natl Acad. Sci. U. S. A. 2007; 104; 1211712122.
  • 64
    Wahl AF, Donaldson KL, Fairchild C et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat. Med. 1996; 2; 7279.
  • 65
    Turner N, Tutt A, Ashworth A. Targeting the DNA repair defect of BRCA tumours. Curr. Opin. Pharmacol. 2005; 5; 388393.
  • 66
    Bartz SR, Zhang Z, Burchard J et al. Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol. Cell. Biol. 2006; 26; 93779386.
  • 67
    Xing D, Orsulic S. A mouse model for the molecular characterization of brca1-associated ovarian carcinoma. Cancer Res. 2006; 66; 89498953.
  • 68
    Reis-Filho J, Pinheiro C, Lambros M et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J. Pathol. 2006; 209; 445453.
  • 69
    Hoadley KA, Weigman VJ, Fan C et al. EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 2007; 8; 258.
  • 70
    Bhargava R, Gerald WL, Li AR et al. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol. 2005; 18; 10271033.
  • 71
    Takano T, Ohe Y, Sakamoto H et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 2005; 23; 68296837.
  • 72
    Hirsch FR, Varella-Garcia M, Bunn PA Jr et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol. 2006; 24; 50345042.
  • 73
    Moroni M, Veronese S, Benvenuti S et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005; 6; 279286.
  • 74
    Siehl J, Thiel E. C-kit, GIST, and imatinib. Recent Results Cancer Res. 2007; 176; 145151.
  • 75
    Simon R, Panussis S, Maurer R et al. KIT (CD117)-positive breast cancers are infrequent and lack KIT gene mutations. Clin. Cancer Res. 2004; 10; 178183.
  • 76
    Finn RS, Dering J, Ginther C et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res. Treat. 2007; 105; 319326.
  • 77
    Huang F, Reeves K, Han X et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res. 2007; 67; 22262238.
  • 78
    Savage K, Lambros MB, Robertson D et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin. Cancer Res. 2007; 13; 90101.
  • 79
    Charafe-Jauffret E, Ginestier C, Monville F et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 2006; 25; 22732284.
  • 80
    Pinilla SM, Honrado E, Hardisson D, Benitez J, Palacios J. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res. Treat. 2006; 99; 8590.
  • 81
    Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1996; 1287; 121149.
  • 82
    Vekris A, Meynard D, Haaz MC et al. Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research. Cancer Res. 2004; 64; 356362.
  • 83
    Foulkes WD, Brunet JS, Stefansson IM et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res. 2004; 64; 830835.
  • 84
    Vaziri SA, Krumroy LM, Elson P et al. Breast tumor immunophenotype of BRCA1-mutation carriers is influenced by age at diagnosis. Clin. Cancer Res. 2001; 7; 19371945.
  • 85
    Foulkes WD, Stefansson IM, Chappuis PO et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst. 2003; 95; 14821485.
  • 86
    Bergamaschi A, Kim YH, Wang P et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 2006; 45; 10331040.
  • 87
    Jones C, Ford E, Gillett C et al. Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin. Cancer Res. 2004; 10; 59885997.
  • 88
    Van Beers EH, Van Welsem T, Wessels LF et al. Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res. 2005; 65; 822827.
  • 89
    Wessels LF, Van Welsem T, Hart AA et al. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 2002; 62; 71107117.
  • 90
    Esteller M, Silva JM, Dominguez G et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl Cancer Inst. 2000; 92; 564569.
  • 91
    Osin P, Lu YJ, Stone J et al. Distinct genetic and epigenetic changes in medullary breast cancer. Int. J. Surg. Pathol. 2003; 11; 153158.
  • 92
    Matros E, Wang ZC, Lodeiro G et al. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles. Breast Cancer Res. Treat. 2005; 91; 179186.
  • 93
    Beger C, Pierce LN, Kruger M et al. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc. Natl Acad. Sci. U. S. A. 2001; 98; 130135.
  • 94
    Welcsh PL, Lee MK, Gonzalez-Hernandez RM et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl Acad. Sci. U. S. A. 2002; 99; 75607565.
  • 95
    McCarthy A, Savage K, Gabriel A et al. A mouse model of basal-like breast carcinoma with metaplastic elements. J. Pathol. 2007; 211; 389398.
  • 96
    Liu X, Holstege H, Van Der Gulden H et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. U. S. A. 2007; 104; 1211112116.
  • 97
    Yap TA, Boss DS, Fong PC et al. First in human phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of KU-0059436 (Ku), a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in cancer patients (p), including BRCA1/2 mutation carriers. J. Clin. Oncol. 2007; 25; 3529 (abstract).