SEARCH

SEARCH BY CITATION

References

  • 1
    Seaberg RM, Van Der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003; 26; 125131.
  • 2
    Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110; 10011020.
  • 3
    Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell 2006; 124; 11111115.
  • 4
    Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34 low/negative stem cell. Science 1996; 273; 242245.
  • 5
    Janes SM, Lowell S, Hutter C. Epidermal stem cells. J. Pathol. 2002; 197; 479491.
  • 6
    Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays 2002; 24; 9198.
  • 7
    Morrison SJ, Qian D, Jerabek L et al. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J. Immunol. 2002; 168; 635642.
  • 8
    Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001; 414; 98104.
  • 9
    Miyagi K, Yamazaki T, Tsujino I et al. Application of hypothermia to autologous stem cell purging. Cryobiology 2001; 42; 190195.
  • 10
    Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J. Cell Sci. 2005; 118; 35853594.
  • 11
    Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197; 461463.
  • 12
    Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367; 645648.
  • 13
    Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumours. Cancer Res. 2003; 63; 58215828.
  • 14
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. U. S. A. 2003; 100; 39833988.
  • 15
    Osborne MP. Breast anatomy and development. In HarrisJR ed. Diseases of the breas, 2nd edn, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 2000; 113.
  • 16
    Henninghausen L, Robinson GW. Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 1998; 12; 449455.
  • 17
    Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J. Mammary Gland Biol. Neoplasia 2000; 5; 227241.
  • 18
    Williams JM, Daniel CW. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 1983; 97; 274290.
  • 19
    Shackleton M, Vaillant F, Simpson KJ et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439; 8488.
  • 20
    DeOme KB, Faulkin LJJ, Bern HA, Blair PB. Development of mammary tumours from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female CH3 mice. Cancer Res. 1959; 19; 515520.
  • 21
    Hoshino K, Gardner WU. Transplantability and life span of mammary gland during serial transplantation in mice. Nature 1967; 213; 193194.
  • 22
    Smith GH, Strickland P, Daniel CW. Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res. 2002; 10; 313320.
  • 23
    Young LJ, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp. Gerontol. 1971; 6; 4956.
  • 24
    Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125; 19211930.
  • 25
    Chepko G, Smith GH. Three division-competent, structurally distinct cell populations contribute to mammary epithelial renewal. Tissue Cell 1997; 29; 239253.
  • 26
    Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res. 1996; 39; 2131.
  • 27
    Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996; 56; 402404.
  • 28
    Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 1996; 274; 20572059.
  • 29
    Frank SA, Nowak MA. Cell biology: developmental predisposition to cancer. Nature 2003; 422; 494.
  • 30
    Novelli M, Cossu A, Oukrif D et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl Acad. Sci. U. S. A. 2003; 100; 33113314.
  • 31
    Diallo R, Schaefer KL, Poremba C et al. Monoclonality in normal epithelium and in hyperplastic and neoplastic lesions of the breast. J. Pathol. 2001; 193; 2732.
  • 32
    Stingl J, Eirew P, Ricketson I et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439; 993997.
  • 33
    Smith CA, Monaghan P, Neville AM. Basal clear cells of the normal human breast. Virchows Arch. A Pathol. Anat. Histopathol. 1984; 402; 319329.
  • 34
    Smith GH. Label-retaining epithelial cells in the mammary gland divide asymmetrically and retain their template DNA strands. Development 2005; 132; 681687.
  • 35
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol. 2002; 245; 4256.
  • 36
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine haematopoietic stem cells that are replicating in vivo. J. Exp. Med. 1996; 183; 17971806.
  • 37
    Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp. Cell Res. 2004; 297; 444460.
  • 38
    Petersen TW, Ibrahim SF, Diercks AH, Van Den Engh G. Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342. Cytometry A 2004; 60; 173181.
  • 39
    Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol. 2005; 277; 443456.
  • 40
    Alvi AJ, Clayton H, Joshi C et al. Functional and molecular characterization of mammary side population cells. Breast Cancer Res. 2003; 5; R1R8.
  • 41
    Dontu G, Abdallah WM, Foley JM et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003; 17; 12531270.
  • 42
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse haematopoietic stem cells. Science 1988; 241; 5862.
  • 43
    Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 1998; 63; 201213.
  • 44
    Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 2001; 67; 93109.
  • 45
    Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissel MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 2002; 16; 693706.
  • 46
    Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res. 2006; 8; R7.
  • 47
    Simian M, Hiray Y, Navre M, Werb Z, Lochter A, Bissel MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 2001; 128; 31173131.
  • 48
    Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 2001; 409; 633637.
  • 49
    Muschler J, Lochter A, Roskelley CD, Yurchenco P, Bissel MJ. Division of labor among the alpha6beta4 integrin, beta1 integrins, and E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Mol. Biol. Cell 1999; 10; 28172828.
  • 50
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 1996; 175; 113.
  • 51
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997; 3; 730737.
  • 52
    Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. U. S. A. 2000; 97; 75217526.
  • 53
    Fidler IJ, Kripke ML. Metastasis results from pre-existing variant cells within a malignant tumour. Science 1977; 197; 893895.
  • 54
    Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science 1982; 217; 9981003.
  • 55
    Nowell PC. Mechanisms of tumour progression. Cancer Res. 1986; 46; 22032207.
  • 56
    Heppner GH. Tumor heterogeneity. Cancer Res. 1984; 44; 22592265.
  • 57
    Weisenthal LM, Lippman ME. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat. Rep. 1985; 69; 615632.
  • 58
    Masters JR. Human cancer cell lines: fact and fantasy. Nat. Rev. Mol. Cell Biol. 2000; 1; 233236.
  • 59
    Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/cell progenitors. Cancer Res. 2005; 65; 55065511.
  • 60
    Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44 +  breast cancer-initiating cells to radiation. J. Natl Cancer Inst. 2006; 98; 17771785.
  • 61
    Cariati M, Naderi A, Brown JP et al. Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF-7 breast cancer cell line. Int. J. Cancer 2007; 122; 298304.
  • 62
    Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res. 2005; 11; 11541159.
  • 63
    Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest. 2005; 115; 15031521.
  • 64
    Shipitsin M, Campbell LL, Argani P et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11; 259273.
  • 65
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumours contain neural-stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39; 193206.
  • 66
    Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumours. Proc. Natl Acad. Sci. U. S. A. 2003; 100; 1517815183.
  • 67
    Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432; 324331.
  • 68
    Valk-Lingbeek ME, Bruggeman SW, Van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004; 118; 409418.
  • 69
    Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121; 465477.
  • 70
    Liu S, Dontu G, Mantle ID et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006; 66; 60636071.
  • 71
    Li Y, Welm B, Podsypanina K et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. U. S. A. 2003; 100; 1585315858.
  • 72
    Costello RT, Mallet F, Gaugler B et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000; 60; 44034411.
  • 73
    Norgaard JM, Olesen LH, Hokland P. Changing picture of cellular drug resistance in human leukemia. Crit. Rev. Oncol. Hematol. 2004; 50; 3949.
  • 74
    Doyle LA, Yang W, Abruzzo LV et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. U. S. A. 1998; 95; 1566515670.