• 1
    Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR. CD1 recognition by mouse NK1+ T lymphocytes. Science 1995; 268 : 8635.
  • 2
    Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant Valpha24+ CD4–CD8– T cells. J Exp Med 1997; 186 : 10920.
  • 3
    Porcelli SA, Modlin RL. The CD1 system. antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 1999; 17 : 297329.
  • 4
    Brossay L, Tangri S, Bix M, Cardell S, Locksley R, Kronenberg M. Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J Immunol 1998; 160 : 36818.
  • 5
    Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB. Diverse TCRs recognize murine CD1. J Immunol 1999; 162 : 1617.
  • 6
    Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR. Tissue-specific segregation of CD1d-dependent and CD1d-independent NKT cells. J Immunol 1999; 162 : 641019.
  • 7
    Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 1999; 189 : 10310.
  • 8
    Exley MA, Tahir SM, Cheng O, Shaulov A, Joyce R, Avigan D, Sackstein R, Balk SP. Cutting edge: a major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol 2001; 167 : 55314.
  • 9
    Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 1995; 270 : 18457.
  • 10
    Joyce S. Natural T cells: cranking up the immune system by prompt cytokine secretion. Proc Natl Acad Sci USA 2000; 97 : 69335.
  • 11
    Smiley ST, Kaplan MH, Grusby MJ. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 1997; 275 : 9779.
  • 12
    Chen YH, Chiu NM, Mandal M, Wang N, Wang CR. Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 1997; 6 : 45967.
  • 13
    Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997; 6 : 46977.
  • 14
    Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996; 26 : 298998.
  • 15
    Wilson SB, Kent SC, Patton KT et al. Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 1998 1998; 391 : 17781.
  • 16
    Sonoda KH, Exley M, Snapper S, Balk SP, Stein-Streilein J. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J Exp Med 1999; 190 : 121526.
  • 17
    Seino KK, Fukao K, Muramoto K et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci U S A 2001; 98 : 257781.
  • 18
    Terabe M, Matsui S, Noben-Trauth N et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 2000; 1 : 51520.
  • 19
    Moodycliffe AM, Nghiem D, Clydesdale G, Ullrich SE. Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 2000; 1 : 5215.
  • 20
    Kawano T, Cui J, Koezuka Y et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997; 278 : 16269.
  • 21
    Burdin N, Brossay L, Koezuka Y et al. Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NKT lymphocytes. J Immunol 1998; 161 : 327181.
  • 22
    Burdin N, Brossay L, Kronenberg M. Immunization with alpha-galactosylceramide polarizes CD1-reactive NKT cells towards Th2 cytokine synthesis. Eur J Immunol 1999; 29 : 201425.
  • 23
    Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, Koezuka Y, Van Kaer L. Cutting edge. activation of NKT cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999; 163 : 23737.
  • 24
    Cui J, Shin T, Kawano T et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278 : 16236.
  • 25
    Kawamura T, Takeda K, Mendiratta SK, Kawamura H, Van Kaer L, Yagita H, Abo T, Okumura K. Critical role of NK1+ T cells in IL-12-induced immune responses in vivo. J Immunol 1998; 160 : 169.
  • 26
    Smyth MJ, Thia KY, Street SE et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000; 191 : 6618.
  • 27
    Takeda K, Hayakawa Y, Atsuta M et al. Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int Immunol 2000; 12 : 90914.
  • 28
    Smyth MJ, Taniguchi M, Street SE. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 2000; 165 : 266570.
  • 29
    Kawano T, Nakayama T, Kamada N et al. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res 1999; 59 : 51025.
  • 30
    Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA. Loss of IFN-gamma production by invariant NKT cells in advanced cancer. J Immunol 2001; 167 : 404650.
  • 31
    Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 1999; 189 : 197380.
  • 32
    Szalay G, Ladel CH, Blum C, Brossay L, Kronenberg M, Kaufmann SH. Cutting edge. Anti-CD1 monoclonal antibody treatment reverses the production patterns of TGF-beta 2 and Th1 cytokines and ameliorates listeriosis in mice. J Immunol 1999; 162 : 69558.
  • 33
    Nieuwenhuis EE, Matsumoto T, Exley M et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 2002; 8 : 58893.
  • 34
    Spence PM, Sriram V, Van Kaer L, Hobbs JA, Brutkiewicz RR. Generation of cellular immunity to lymphocytic choriomeningitis virus is independent of CD1d1 expression. Immunology 2001; 104 : 16874.
  • 35
    Johnson TR, Hong S, Van Kaer L, Koezuka Y, Graham BS. NK T cells contribute to expansion of CD8(+) T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 2002; 76 : 429403.
  • 36
    Hobbs JA, Cho S, Roberts TJ, Sriram V, Zhang J, Xu M, Brutkiewicz RR. Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus. J Virol 2001; 75 : 1074654.
  • 37
    Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG. Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol 2003; 170 : 14304.
  • 38
    Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163 : 464750.
  • 39
    Eberl G, MacDonald HR. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 2000; 30 : 98592.
  • 40
    Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 2000; 192 : 92130.
  • 41
    Gonzalez-Aseguinolaza G, De Oliveira C, Tomaska M et al. Alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci USA 2000; 97 : 84616.
  • 42
    Molano A, Park SH, Chiu YH, Nosseir S, Bendelac A, Tsuji M. Cutting edge. the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NKT cell activation and antimalarial responses. J Immunol 2000; 164 : 50059.
  • 43
    Exley MA, Bigley NJ, Cheng O et al. CD1d-reactive T-cell activation leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol 2001; 69 : 7138.
  • 44
    Giron DJ, Cohen SJ, Lyons SP, Wharton CH, Cerutis DR. Inhibition of virus-induced diabetes mellitus by interferon is influenced by the host strain. Proc Soc Exp Biol Medical 1983; 173 : 32831.
  • 45
    Huber SA, Babu PG, Craighead JE. Genetic influences on the immunologic pathogenesis of encephalomyocarditis (EMC) virus-induced diabetes mellitus. Diabetes 1985; 34 : 118690.
  • 46
    Gaines KL, Kayes SG, Wilson GL. Factors affecting the infection of the D variant of encephalomyocarditis virus in the B cells of C57BL/6J mice. Diabetologia 1987; 30 : 41925.
  • 47
    White LL, Smith RA. D variant of encephalomyocarditis virus (EMCV-D) -induced diabetes following natural killer cell depletion in diabetes-resistant male C57BL/6J mice. Viral Immunol 1990; 3 : 6776.
  • 48
    Baek HS, Yoon JW. Role of macrophages in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. J Virol 1990; 64 : 570815.
  • 49
    Kanda T, Utsugi T, Kawazu S et al. Induction of virus-induced IDDM in virus resistant mice without lymphocyte maturation. Life Sci 1998; 63 : 3340.
  • 50
    Neal ZC, Splitter GA. Protection against lethal encephalomyocarditis virus infection in the absence of serum-neutralizing antibodies. J Virol 1998; 72 : 805260.
  • 51
    Ozmen L, Aguet M, Trinchieri G, Garotta G. The in vivo antiviral activity of interleukin-12 is mediated by gamma interferon. J Virol 1995; 69 : 814750.
  • 52
    Pozzetto B, Gresser I. Role of sex and early interferon production in the susceptibility of mice to encephalomyocarditis virus. J Gen Virol 1985; 66 : 7019.
  • 53
    McFarland HI, Bigley NJ. Sex-dependent, early cytokine production by NK-like spleen cells following infection with the D variant of encephalomyocarditis virus (EMCV-D). Viral Immunol 1989; 2 : 20514.
  • 54
    Curiel RE, Miller MH, Ishikawa R, Thomas DC, Bigley NJ. Does the gender difference in interferon production seen in picornavirus-infected spleen cell cultures from ICR Swiss mice have any in vivo significance? J Interferon Res 1993; 13 : 38795.
  • 55
    Bradbury A, Belt KT, Neri TM, Milstein C, Calabi F. Mouse CD1 is distinct from and co-exists with TL in the same thymus. EMBO J 1988; 7 : 30816.
  • 56
    Balk SP, Bleicher PA, Terhorst C. Isolation and expression of cDNA encoding the murine homologues of CD1. J Immunol 1991; 146 : 76874.
  • 57
    Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 1988; 336 : 34852.
  • 58
    Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84 : 91121.
  • 59
    Biron CA. Role of early cytokines, including alpha and beta interferons (IFN- alpha/beta), in innate and adaptive immune responses to viral infections. Semin Immunol 1998; 10 : 38390.
  • 60
    Kitamura H, Iwakabe K, Yahata T et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL) -12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999; 189 : 11218.
  • 61
    Tomura M, Yu WG, Ahn HJ et al. A novel function of Valpha14+CD4+NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J Immunol 1999; 163 : 93101.
  • 62
    Leite-De-Moraes MC, Hameg A, Arnould A, Machavoine F, Koezuka Y, Schneider E, Herbelin A, Dy M. A distinct IL-18-induced pathway to fully activate NKT lymphocytes independently from TCR engagement. J Immunol 1999; 163 : 58716.
  • 63
    Huber SA, Sartini D, Exley M. Vgamma4(+) T cells promote autoimmune CD8(+) cytolytic T-lymphocyte activation in coxsackievirus B3-induced myocarditis in mice: role for CD4(+) Th1 cells. J Virol 2002; 76 : 1078590.
  • 64
    Huber S, Sartini D, Exley M. Role of CD1d in coxsackievirus B3-induced myocarditis. J Immunol 2003; 170 : 314753.
  • 65
    Exley MA, He Q, Cheng O, Wang RJ, Cheney CP, Balk SP, Koziel MJ. Cutting edge. Compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver. J Immunol 2002; 168 : 151923.