• CD89;
  • IgA receptor;
  • macaques;
  • splice variants;
  • non-human primate models


The interaction of the immunoglobulin A (IgA) molecule with its specific cellular receptor is necessary to trigger a variety of effector functions able to clear IgA-opsonized antigens. The human IgA-specific Fc receptor, FcαRI or CD89, is expressed on cells of the myeloid lineage. Recently, CD89 homologues have been identified in rats and cattle. Because non-human primates represent well established models for a variety of human diseases and for the testing of immunotherapeutic strategies, we cloned and sequenced cDNAs corresponding to the CD89 gene from rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. Macaque sequences of full-length CD89 consist of five exons of length identical to the corresponding human CD89 exons. The rhesus and cynomolgus macaque derived amino acid sequences are highly homologous to each other (99·3% identity) and exhibit 86·5% and 86·1% identity to the human counterpart, respectively. Transfection of HeLa cells with plasmids containing the cloned macaque cDNAs resulted in the expression of surface molecules recognized by an anti-human CD89 antibody. Five splice variants were identified in rhesus macaques. Three of the five variants are similar to described human CD89 splice variants, whereas two variants have not been described in humans. Three splice variants were identified in cynomolgus macaques. Of the three variants, one is present also in humans and rhesus macaques, whereas the other two are shared with rhesus macaques but not humans. Similarly to the human CD89, macaque CD89 is expressed on myeloid cells from peripheral blood. The characterization of macaque CD89 represents an essential step in establishing a non-human primate model for the testing of immunotherapeutic approaches based on the manipulation of the IgA/CD89 interaction.